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Details of the pixel-level adversarial patch
attack in the digital world

The pixel-level adversarial patch used pixels as the basic
unit. Each pixel value was an optimization variable. We fol-
lowed the work of Thys et al. (2019) to build a square patch
with the pixel size of 300x300. The difference was that our
patch was a grayscale image instead of an RGB image. We
first initialized a 300 300 pixel-level patch. There were two
options: random initialization and uniform initialization. We
found that when each pixel was initialized to 0.5, the net-
work convergence effect was better in our experiment, so
we adopted the uniform initialization method.

To make the patch more robust, we designed a variety of
transformations including random noise on the patch, ran-
dom rotation of the patch (clockwise or counterclockwise
within 20 degrees), random translation of the patch, and ran-
dom changes in the brightness and contrast of the patch.
These transformations simulate the perturbation of the phys-
ical world to a certain extent, which effectively improves the
robustness of the patch. Then we used the training set of
FLIR person_select and placed the patch on the upper body
of the pedestrians according to the position of the bounding
box. The size of the patch was 1/5 of the height of the bound-
ing box. Next, we used the patched image as input and ran
the YOLOV3 pedestrian detector we had trained. We used a
stochastic gradient descent optimizer with momentum, and
the size of each batch was 8. The optimizer used the back-
propagation algorithm to update the pixel values by mini-
mizing the loss function. Through this process, we obtained
a series of patches. Figure S1 is an example after 65801 it-
erations.

Next, we applied the optimized patch shown in Figure
S1 to the test set, using the same process we used during
training, including various transformations. We used ran-
dom noise patches with maximum amplitude value 1 and
constant pixel value patches (blank patches) for control ex-
periments. The pixel values of blank patch in our experiment
were 0.75 (Other values had similar influence to detectors;
see the next section). We applied these different patches to
the FLIR person_select test set, and then input the patched
images to the same detection network to test its detection
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Figure S1: An example of the pixel-level adversarial patch.

performance. We adopted the IOU method to calculate the
accuracy of the detection. The precision-recall (PR) curves
are shown in Figure S2. We defined the output of the clean
image input as the ground truth, then the pixel-level adver-
sarial patch made the average precision (AP, the area under
the PR curve) of the target detector drop by 74.57%. An ex-
ample is shown in Figure S3. In contrast, the AP of the tar-
get detector dropped by 25.30% and 29.27% using random
noise patch and blank patch, respectively.
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Figure S2: Evaluation of the pixel-level adversarial patch at-
tack.



(d) Designed patch

(c) Random noise

Figure S3: The pixel-level adversarial patch attack and con-
trol experiments.

Influence of the pixel value of the blank patch
to the detection performance

All pixels of the blank patch had the same value. So we stud-
ied the influence of the pixel value to the detection perfor-
mance. The pixel value varied from 0 to 1. We chose five val-
ues (0.1, 0.25, 0.5, 0.75 and 0.9). The PR curves are shown
in Figure S4. The blank patches with different pixel values
caused the AP of YOLOV3 to drop by 30% =+ 5%. Therefore
the influence to the detector did not vary significantly with
different pixel values. We chose a typical value of 0.75 in
other experiments.
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Figure S4: Evaluation of blank patches with different pixel
values.

Attack the visible light and infrared object
detection systems at the same time
An interesting question is whether we can design a phys-
ical board that can evade the person detectors working on

both visible light images and infrared images. Based on our
method, the solution turned out to be simple. We printed an

adversarial patch on a paper, which was crafted according to
the a previous work (Thys, Ranst, and Goedemé 2019) by
using YOLOV3 as the target detector. The size of the adver-
sarial patch was 29.8cm x 29.8cm. Then we put the paper
on the physical board with small bulbs we designed before.
The digital patch and the physical board is shown in Figure
S5(a) and Figure S5(b).
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Figure S5: The adversarial digital patch and physical board.
Note that the small bulbs are covered by the printed paper in
(b).

We invited several persons to participate in the test. They
could hold the adversarial board, or a blank board, or noth-
ing. We used visible light camera and thermal infrared cam-
era to shoot these people under the same conditions. Then
we input the images to the target detector YOLOvV3. The
result showed that we could successfully attack the visible
light and infrared object detection systems at the same time.
Several examples are shown in Figure S6.

Figure S6: An example of visible light and infrared physical
board attacks. For privacy reasons, we blurred the facial area
on visible light images.
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