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Abstract
Thermal infrared detection systems play an important role in
many areas such as night security, autonomous driving, and
body temperature detection. They have the unique advantages
of passive imaging, temperature sensitivity and penetration.
But the security of these systems themselves has not been
fully explored, which poses risks in applying these systems.
We propose a physical attack method with small bulbs on
a board against the state of-the-art pedestrian detectors. Our
goal is to make infrared pedestrian detectors unable to detect
real-world pedestrians. Towards this goal, we first showed
that it is possible to use two kinds of patches to attack the
infrared pedestrian detector based on YOLOv3. The average
precision (AP) dropped by 64.12% in the digital world, while
a blank board with the same size caused the AP to drop by
29.69% only. After that, we designed and manufactured a
physical board and successfully attacked YOLOv3 in the real
world. In recorded videos, the physical board caused AP of
the target detector to drop by 34.48%, while a blank board
with the same size caused the AP to drop by 14.91% only.
With the ensemble attack techniques, the designed physical
board had good transferability to unseen detectors.

Introduction
It is well known that deep neural networks (DNNs) are
vulnerable to adversarial attacks, i.e., they can be fooled
by input examples with some deliberately designed small
perturbations. Such examples are called adversarial exam-
ples. Since the findings of Szegedy et al. (2013), there is
increasing interest in the field of adversarial attacks. For
digital world attacks, many methods have been proposed
including the gradient-based attacks (Goodfellow, Shlens,
and Szegedy 2015; Kurakin, Goodfellow, and Bengio 2017;
Madry et al. 2018), optimization-based attacks (Carlini and
Wagner 2017; Szegedy et al. 2014; Eykholt et al. 2018), and
network-based attacks (Xiao et al. 2018; Liu et al. 2019).
Annoyingly, adversarial examples not only exist in the dig-
ital world but also exist in the real world. Athalye et al.
(2018) showed that a 3D printed turtle could be mistaken
for a rifle by a DNN. Simen et al. (2019) designed a print-
able patch that successfully attacked the pedestrian detec-
tion system and achieved an “invisibility” effect. Xu et al.
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(2019) invented Adversarial T-shirts, which could attack the
person detectors even if it has non-rigid deformation due to
a moving person’s pose changes. The adversarial attack in
the physical world has attracted much attention as it poses
high risks to the widely deployed deep learning-based se-
curity systems. It urges researchers to re-evaluate the safety
and reliability of these systems.

Figure 1: An example of physical infrared attack and control
experiments

Almost all current research on adversarial attacks focused
on the visible light field. There is a lack of research on the
safety of infrared (Thermal infrared in our paper) object de-
tection systems, which have been widely deployed in our so-
ciety with their unique advantages. First of all, the infrared
object detection systems can work at night. It implies that the
surveillance systems based on the infrared cameras do not
need environmental light and can save energy in certain sce-
narios. Some autonomous driving companies are currently
using infrared images as auxiliary input at night. Secondly,
they can detect objects behind certain obstacles. For exam-
ple, a person can still be detected when hiding in bushes.
Thirdly, compared to visible light images, infrared images
not only contain the shape information of the object but also
contain the temperature information of the object. During
the pandemic caused by COVID-19, infrared pedestrian de-
tection has received more and more attention. With the de-
velopment of deep learning, infrared object detection has
made significant progress.

Compared with the visible images which have three chan-
nels (RGB), the challenge of the infrared image processing



is that the infrared image has only one gray-scale channel,
and the texture information is far less than that of visible
light image. Besides, to realize physical attacks, visible im-
ages can be printed by a laser printer, which can preserve
most details of the designed adversarial images. Obviously,
one cannot obtain an adversarial infrared image by “print-
ing” any digital image.

To solve this problem, we propose a method to realize the
adversarial infrared images in the real world. Our method
is to use a set of small bulbs on a cardboard, which can be
held by hands. A dedicated circuit is designed to supply elec-
tricity to the bulbs. Eqipped with eight 4.5V batteries, the
cardboard decorated with small bulbs can successfully fool
the state-of-the-art infrared pedestrian detection models. The
cost of this setup is less than 5 US dollars. An example of
physical infrared attack and control experiments is shown
in Figure 1. As far as we know, we are the first to realize
physical attacks on the thermal infrared pedestrian detector.

Related work
Digital attacks in visible light images
Szegedy et al. (2014) found that when small perturbations
added to an image, it will cause image classification er-
rors. Goodfellow et al. (2015) developed a method to effi-
ciently compute an adversarial perturbation for a given im-
age, which is called FGSM. Based on the above work, BIM
(Kurakin, Goodfellow, and Bengio 2017) optimizes the pro-
cess by taking more small-step iterations. Dong et al. (2018)
proposed MIFGSM, which added a momentum term during
iterative optimization. A particular case of digital attacks is
to modify only one pixel of the image to fool the classifier.
Moosavi-Dezfooli et al. (2017) computed universal pertur-
bations to fool DNNs.

Physical attacks in visible light images
Sharif et al. (2016) designed a wearable glasses that could
attack facial recognition systems. Eykholt et al. (2018) de-
signed a road sign with perturbations that can fool the road
sign recognition systems in practical driving. Athalye et al.
(2018) proposed a method for generating 3D adversarial ex-
amples. Zhou et al. (2018) designed an invisible mask that
can attack the face recognition system. They hide the in-
frared diode under the hat. Simen et al. (2019) proposed an
optimization-based method to create a patch that could suc-
cessfully hide a person from a person detector.

Object detection
There are three kinds of target detectors: one-stage, two-
stage, and multi-stage detectors. The YOLOv3 (Redmon and
Farhadi 2018) model is a typical one-stage detection method
with the advantage of fast detection speed and high accu-
racy. RetinaNet (Lin et al. 2017) is also a one-stage detector
using Focal loss. Faster R-CNN (Ren et al. 2017) is a typ-
ical two-stage detector using RPN to extract candidate ROI
regions. Cascade R-CNN (Cai and Vasconcelos 2018) is a
multi-stage detector which contains a set of detectors trained
with increasing IOU thresholds.

Sujoy et al. (2017) used local steering kernel (LSK) as
low-level descriptors for detecting pedestrians in thermal
infrared images. Yifan et al. (2019) proposed an infrared
pedestrian detection method with a converted temperature
map. YuHang et al. (2020) proposed an infrared small target
detection algorithm based on the peak aggregation number
and Gaussian discrimination. Mate et al. (2020) investigated
the task of automatic person detection in thermal images us-
ing convolutional neural network models originally intended
for detection in RGB images. They compared the perfor-
mance of the standard state-of-the-art object detectors such
as Faster R-CNN, SSD, Cascade R-CNN, and YOLOv3, that
were retrained on a dataset of thermal images extracted from
videos. Videos were recorded at night in clear weather, rain,
and in the fog, at different ranges, and with different move-
ment types. YOLOv3 was significantly faster than other de-
tectors while achieving performance comparable with the
best (Kristo, Ivasic-Kos, and Pobar 2020). In this paper, we
mainly attacked the YOLOv3 model. After that, we trans-
fered the infrared patch attack to other object detectors.

Generating infrared adversarial patches
We first formulate the problem, and introduce the attack
method in the digital world, and then the attack method in
the physical world.

Problem formulation
We assume that the original image input is x, and the adver-
sarial perturbation is δ. Since we use a patch attack method,
the perturbation only occupies part of the image. We assume
the patched image is x̃.

Let f denote a model, θ denote its parameters, and f (x, θ)
denote its output given the input x. Note that most object de-
tector models have three outputs: position of of the bound-
ing box fpos (x, θ), the object probability fobj (x, θ), and
the class score fcls (x, θ). Our goal is to attack the detec-
tion model so that the detection model can not detect objects
of the specified category. In other words, we want to lower
the fobj (x, θ) score as much as possible. Therefore, the goal
can be described as

min
δ

fobj (x̃, θ) . (1)

Our goal is to attack the object detector in the physical
world, so we need to consider various image transforma-
tions of the patches during the attack, such as rotation, scale,
noise, brightness, and contrast. Furthermore, due to lots of
intra-class variety of pedestrians, we hope to achieve a uni-
versal attack on different people. Assuming that the set of
transformations is T , the patched image considering patch
transformations is x̃t, and the data set hasN pedestrians, the
goal can be described as

min
δ

1

N

∑N

i=1
Et∈T f (i)obj (x̃t, θ). (2)

Our loss function consists of two parts:

• Lobj represents the maximum objectness score as shown
in Equation (2).



Figure 2: Overview of our work. Top is the training process, bottom is the physical attack process.

• Ltv represents the total variation of the image. This loss
ensures that the optimized image is smoother and prevents
noisy images. We assume that pi,j represents the pixel
value at a coordinate (i, j) in the patch. We can calculate
Ltv as follows:

Ltv =
∑
i,j

√
(pi,j − pi+1,j)

2
+ (pi,j − pi,j+1)

2
. (3)

We take the sum of the two losses weighted by the factor
λ which are determined empirically. Given by:

L = Lobj + λLtv. (4)

For the ensemble attack, We hope to lower the maximum
objectness score of each detector at the same time. Assume
there areM detectors, and the maximum objectness score of
i-th detector is L(i)

obj . We take the sum of these losses. So the
total loss of the ensemble attack is:

Lensemble =

M∑
i=1

L
(i)
obj + λLtv. (5)

We use backpropagation to update the the patch iteratively
(Figure 2).

Digital patch attack
The pixel-level patch First of all, we wondered if we fol-
low the adversarial attack method on visible light images
to fool pedestrian detectors, what patch will be resulted in.
Specifically, can the resulted patches be realized easily by
using some thermal materials? It is easy to carry out this
experiment because we only need to change the RGB im-
ages to grayscale images and follow the method described
in (Thys, Ranst, and Goedemé 2019).

Figure 3: The measured temperatures along the horizontal
section shown in (a) are plotted in (b). The temperatures
along other sections were nearly the same as those along
the horizontal section, therefore are not shown in (b).

The Gaussian functions patch To implement the adver-
sarial attack in the physical world, another idea is to design
an adversarial example based on the thermal property of cer-
tain given electronic components (e.g., resistors). We can
first measure the relationship between the thermal proper-
ties of the components and the image patterns captured by
the infrared cameras, then design an adversarial patch in the
digital world, and finally manufacture a physical board spec-
ified by this digital adversarial patch. Since infrared thermal
imaging mainly uses the thermal radiation of the object, in
the selection of electronic components, we consider diodes,
resistors and small bulbs. We found that the small bulb is
a good candidate for adjusting image patterns captured by
infrared cameras. Its brightness well relects its temperature.
With the help of the rheostat, we can adjust the bulb bright-
ness intuitively. We can fine-tune its infrared imaging pattern



in this way.
We took an infrared image of a single bulb. Then we used

FLIR tools software provided by FLIR company to export
the temperature of each point in the image. We first selected
the temperature values on multiple lines that cross the cen-
ter and then we used the Gaussian function for fitting as
shown in Figure 3. The fitting was good and the Root Mean
Squard Error (RMSE) was 0.1511. The amplitude value of
the Gaussian function is 10.62, and the standard deviation
is 70.07. Further experiments showed that the temperature
of the same point measured by the infrared camera did not
change with distance because of the correction function of
the infrared camera. Therefore, the pixel value of the same
point did not change with distance.

If we put many bulbs on a cardboard, the infrared camera
will capture an image patch with a set of 2D Gaussian pat-
terns, the centers of which have the highest pixel values. The
problem now is whether we can design such an image patch
to fool the pedestrian detectors. We first carry out the at-
tack using the Gaussian functions patch in the digital world.
Since the amplitude and standard deviation of the Gaussian
function is fixed to be measured values, the optimization
paramter of each two-dimensional Gaussian function is the
coordinate of the center point. Besides, this kind of patch
significantly reduces the number of parameters compared
with the pixel-level patch. In our experiment, the number
of optimization parameters dropped nearly 1000 times.

Assuming that the pattern of a patch is superimposed by
M spots that conform to Gaussian functions, where the cen-
ter point of the i-th Gaussian function is (px, py), the am-
plitude amplification factor is si, and the standard deviation
is σi. The measured si was 10.62, and σi was 70.07 in our
experiment. We assume that the height of the entire image
is h , the width is w, and the coordinate of a single-pixel is
(x, y), where x ∈ [0, w] , y ∈ [0, h], then the i-th Gaussian
function is as follows:

g(i) (x, y) = si · exp

−
(
x− p(i)x

)2
+
(
y − p(i)y

)2
2σ2

i

 .

(6)
Suppose the background of the patch is Pback, which is

a matrix with all elements equal to µ. The overall function
of multiple 2D Gaussian functions superimposed together is
denoted by Psyn:

Psyn = Pback +

M∑
i=1

Gi (7)

Gi =

g
(i) (0, 0) . . . g(i) (0, w)

...
. . .

...
g(i) (h, 0) · · · g(i) (h,w)

 . (8)

Physical board attack
In practice, we face a challenge to move the bulbs freely on
a board when we try different patterns. In other words, we
need an adjustable physical board as shown in Figure 4(a).

We solve the problem by using magnets. One magnet is fixed
to the bulb, and the other magnet is placed on the other side
of the board. The magnet can attract the bulb on the other
side and can adjust the position of the bulb as a button.

Figure 4: Physical board design

For circuit design, we used multiple independent power
supply DC4.5V power modules. The rated voltage of the
small bulb was 3.8V. After measurement, the total power of
the physical board did not exceed 22W. The power supply
lines of each light bulb were connected in parallel, and each
circuit contained a small switch and a rheostat. This can en-
sure that the different small bulbs were independent of each
other. The demo circuit design diagram is shown in Figure
4(b).

Experiments and results
Preparing the data
The dataset we used is FLIR ADAS dataset v1 3 released
by FLIR. FLIR ADAS provides an annotated thermal im-
age and non-annotated RGB image set for training and val-
idation of object detection networks. The data set contains
10228 thermal images sampled from short videos and a
continuous 144-second video. These photos were taken on
the streets and highways in Santa Barbara, California, the
USA from November to May. The thermal image is a FLIR
Tau2 (13 mm f/1.0, 45-degree HFOV and 37-degree VFOV,
FPA640× 512, NETD<60mK).

Thermal images are manually annotated and contain a to-
tal of four types of objects, namely people, bicycles, cars,
and dogs. Since we only care about people, we filtered the
original data set, and only kept images that contained people
whose height is greater than 120 pixels. We finally selected
1011 images containing infrared pedestrians. We used 710
of them as the training set and 301 as the test set. We named
them FLIR person select.

Target detector
Mate et al.(2020) have compared the performance of the
standard state-of-the-art infrared object detectors such as
Faster R-CNN, SSD, Cascade R-CNN, and YOLOv3. They
found that YOLOv3 was significantly faster than other de-
tectors while achieving performance comparable with the
best. So we chose YOLOv3 as the target detector. The



network has 105 layers. We resized the input images to
416 × 416 as required by the model. We chose the pre-
training weights officially provided by YOLO and then fi-
tuned on FLIR person select. The AP of the model was
0.9902 on the training set, and 0.8522 on the test set. We
used this model as the target model of attack.

Simulation of physical attacks
Pixel-level patch attack Following the process described
by Simen et al. (2019), we obtained a patch shown in Figure
5 (a). The attack was successful as the patch made the ac-
curacy of YOLOv3 dropped by 74.57% (see Supplementary
Information for more details). However, the resulted patch
contained numourous grayscale pixels as noise, which are
difficult to realize physically. Therefore we abandoned this
approach.

Figure 5: The digital patch

Figure 6: Evaluation of Gaussian functions patch attack

Gaussian functions patch attack The pattern of the
Gaussian functions patch is superimposed by multiple spots
that conform to a two-dimensional Gaussian function (Fig-
ure 3). To make the patch more robust, we designed a vari-
ety of transformations including random noise on the patch,
random rotation of the patch (clockwise or counterclockwise
within 20 degrees), random translation of the patch, and ran-
dom changes in the brightness and contrast of the patch.
These transformations simulate the perturbation of the phys-
ical world to a certain extent, which effectively improves the
robustness of the patch. Then we used the training set of

FLIR person select and placed the patch on the upper body
of the pedestrians according to the position of the bounding
box. The size of the patch was 1/5 of the height of the bound-
ing box. Next, we used the patched image as input and ran
the YOLOv3 pedestrian detector we had trained. We used a
stochastic gradient descent optimizer with momentum, and
the size of each batch was 8. The optimizer used the back-
propagation algorithm to update the parameters of Gaussian
functions by minimizing Equation (4).Through this process,
we obtained a series of patches with different numbers of
Gaussian functions. Figure 5(b) is an example with 22 Gaus-
sian functions.

Next, we applied the optimized patch which is shown
in Figure 5(b) to the test set, using the same process we
used during training, including various transformations. We
used random noise patches with maximum amplitude value
1 and constant pixel value patches (blank patches) for con-
trol experiments. The pixel values of blank patch in our
experiment were 0.75. We tried other values and found
that blank patches with different pixel values had a simi-
lar attack effect. We applied these different patches to the
FLIR person select test set, and then input the patched im-
ages to the same detection network to test its detection per-
formance. We adopt the IOU method to calculate the accu-
racy of the detection. The precision-recall (PR) curves are
shown in Figure 6. Using the output of the clean image in-
put as ground truth, the Gaussian fuctions patch we designed
made the average precision (AP, the area under the PR curve)
of the target detector drop by 64.12%. We give an example
to show the attacking effect in Figure 7. In contrast, the AP
of the target detector dropped by 25.05% and 29.69% using
random noise patch and using blank patch, respectively.

Note that the attack performance of the Gaussian func-
tions patch attack was not as good as the pixel-level patch
attack. This is reasonable as the latter had nearly 1000 times
more parameters than the former. But the former is easier to
be realized physically.

We tried different kinds of patches and evaluated the at-
tack effect of different patches by AP, the results is shown
in Table 1. We found the Gaussian functions patch with 22

Table 1: The study of the number of Gaussian functions

The number The AP dropped by

9 46.02%
15 51.26%
22 64.12%
25 65.74%
36 66.88%

spots had a good attack effect, while maintaining a small
amount of parameters.

The effects of patch size
We scaled up or down the original image to study the effect
of patch size on the attack. We used the patch shown in Fig-
ure 5(b). We did five experiments. One kept the original size
of the patch (300 × 300), the other two expanded the side



Figure 7: Gaussian functions patch attack and control experiments

length by 1.5 times and 2 times respectively, and the last
two reduced the side length to 2/3 and 1/2 of the original
respectively. The results are shown in Figure 8. The patch
which is doubled in size caused AP of YOLOv3 to drop by
95.42%. We found that when the patch size dropped to 1/2 of
its original size, its attack performance dropped a lot. That’s
the limit of our patch attack method.

Figure 8: Evaluation of patch attack with different size

Evaluation of attacks in the real world
The pattern of the physical board is derived from the Gaus-
sian functions patch as shown in Figure 5(b). We chose a
35cm×35cm cardboard. The finished board is shown in Fig-
ure 9. It is worth noting that the total manufacturing cost
of our physical board did not exceed $5, indicating the pro-
posed approach is economic. Figure 10 shows the simulated
and actual boards.

Figure 9: Physical board we manufactured

Figure 10: Comparation between simulated and actual board

We conducted physical attack experiments. The equip-
ment we used was HTI-301 infrared camera (FPA 384×288,
NETD<60mK). We invited several people to do the exper-
iment. They could hold the adversarial board, or a blank
board, or nothing. We used the infrared camera to shoot
these people at the same time under the same conditions, and
then sent the thermal infrared photos to the pedestrian detec-
tor for testing. Some examples of testing results are shown
in Figure 11. It is seen that whenever a person held the blank
board or nothing, YOLOv3 could detect her/him. However,
if a person held the adversarial board, YOLOv3 could not
detect her/him. The results show the physical board we de-
signed can successfully attack the infrared pedestrian detec-
tion system in the real world.

To quantify the effects of a physical attack, we recorded
20 videos from different scenes(See supplementary materi-
als for the demo video). We invited several people to be the
actors of the videos. For fair comparison, we asked the ac-
tors to walk three times from the same starting position to
the same end positions with the same path, once with the
adversarial board, once with the blank board and another
with nothing. Each group of videos were taken in the same
condition. Ten videos were recorded indoors, and the oth-
ers were recorded outdoors. Each video took 5-10 seconds.
The camera got 30 frames per second. We considered differ-
ent distances (between 3 and 15 meters) and angles (from
45 degrees on the left to 45 degrees on the right) when
recording the video. There were 1853 frames of images that
contained the physical board we designed, 1853 frames of
images that contained the blank board, and the other 1853



Figure 11: Physical board attacks and control experiments

frames that just contained pedestrians. The result showed
that the cardboard caused the AP of the target detector to
drop by 34.48%, while a blank board with the same size
caused the AP to drop by 14.91% only.

Figure 12: The patch obtained by model ensemble

Ensemble attack
In order to study whether we can transfer the infrared patch
attack to other detection models, we did the following exper-
iment. At the beginning, we directly used the patch which
successfully attacked YOLOv3 to attack other detectors,
such as Cascade-RCNN and RetinaNet. The patch trained on
YOLOv3 caused the AP of Cascade-RCNN and RetinaNet
to drop by 11.60% and 25.86%. To improve the transferabil-
ity of attack, we use model ensemble techniques. We ob-
tained a new Gaussian patch by integrating YOLOv3, Faster-
RCNN, and Mask-RCNN during training as shown in Fig-
ure 12. Cascade-RCNN and RetinaNet were attacked in the
digital world firstly. As shown in Table 2, our patch caused
the AP of Cascade RCNN and RetinaNet to drop by 35.28%
and 46.95% respectively, After that, we conducted exper-
iments in the physical world, and the experimental settings

Table 2: Transferability in the digital world

Train
Test Cascade RCNN RetinaNet

YOLOv3 11.60% 25.86%

YOLOv3+Faster
-RCNN+Mask-RCNN 35.28% 46.95%

were consistent with section Evaluation of attacks in the real
world. Our patch make the AP of Cascade RCNN and Reti-
naNet dropped by 21.67% and 25.17% respectively in real
world.

Conclusion

In this article, we demonstrate that it is possible to attack the
infrared pedestrian detector in the real world. We propose
two kinds of patches: the pixel-level patch and the Gaus-
sian functions patch. We implement the attack in the phys-
ical world by designing a cardboard decorated with small
bulbs. The physical board can successfully fooled the in-
frared pedestrian detector based on YOLOv3 . In addition,
by using the ensemble attack technique, we designed a card-
board that could fool detectors that were unknown to us. As
the thermal infrared detection systems are widely used in
night security, automatic driving, especially body temper-
ature detection during COVID-19, our work has important
practical significance.
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