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ABSTRACT

Different neural networks have exhibited excellent parfance on
various speech processing tasks, and they usually havéiset
vantages and disadvantages. We propose to use a recerdlguky
deep learning model, recurrent convolutional neural nety@CN-
N), for speech processing, which inherits some merits afireo-
t neural network (RNN) and convolutional neural network (QN
The core module can be viewed as a convolutional layer engaed
with an RNN, which enables the model to capture both tempzordl
frequency dependance in the spectrogram of the speech iffian e
cientway. The model is tested on speech corpus TIMIT for phua
recognition and IEMOCAP for emotion recognition. Experirted
results show that the model is competitive with previoushods in
terms of accuracy and efficiency.
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1. INTRODUCTION

Speech processing has been studied for decades. It hasdeng b
dominated by the Gaussian Mixture Models (GMM) - Hidden
Markov Model (HMM) [17] structure until the resurgence ofege
neural network (DNN)[[20]. The first DNN successfully applie
to speech recognition refers to the multi-layer percepiidiP)
(when trained in an unsupervised way it is called deep be&gafork
[13]). MLP-HMM systems significantly improved the perfornte

of speech recognition on both small dataskts [20] and Iscgée
datasetd]7]. In recent years, recurrent neural networkB\(Rsuch
as the long short-term memory (LSTM) and gated recurrertsuni
(GRU) have achieved even better results in speech recognkiow-
ever, RNNs are generally hard to train because they cankefué
advantage of current highly optimized parallel computiagilfties
such as GPU. Convolutional neural network (CNN) is anotiessc
of popular deep learning model, but it has not exhibited ificamt
improvement over other models in speech processing.

Recently, Liang et al[]18.19] proposed an integrated motiel
RNN and CNN, called Recurrent Convolutional Neural Netw@k
CNN), and successfully applied it to object recognition acene
labeling. In view of the embedded RNN structure, it is expddb
function well in modeling speech because speech is a typipalof
sequential data, in which the information is temporallyatedl. This
is the primary motivation of the present work. We want to know
whether this particular structure is suitable for speeghted appli-
cations. The experimental results on two speech procedsitagets
show that RCNN is efficient and effective, indicating thasid good
alternative in related applicatidhs

1The source codes can be downloaded at: https:/githutztmmyue-
zephyrus/RecurrentConvNet-for-Speech.
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2. RELATED WORK

CNN has been widely used in computer vision. Intuitivelyjsit
also applicable to speech recognition since the audio kicgra
be converted via short-time fourier transform (STFT) intspeec-
trogram which can be viewed as a 2-dimensioage indexed by
the time-axis and frequency-axis. Despite some positigelte
s, it has long been argued that CNNs overkill the variatiamgl
time-scale by pooling within a temporal window, resultimgdeep
fully-connected neural network’s dominance in modelimgetivari-
ation [17]. Abdel-Hamid et al. introducedliamited-weight-sharing
convolutional schemé&TL] 2] and found that using convotuttng
the frequency axis or time axis increased recognition aayybut
the improvement was less significant along the time axis. [[évia
ate the problem, a bottleneck network was constructed icepbd
the pooling layer[[29]. Furthermore, Téth in[28] proposeeat-
ing time-domain and frequency-domain separately and eetiie
the best performance on the TIMIT dataset by constructiroi su
hierarchical convolutional network.

Inspired by the temporal characteristics of speech, RNNghvh
tries to predict the current frame based on feature infaonabllect-
ed from previous frames, has long been used in speech réiomgni
tasks[[28]. Due to its capability of modeling sequentialagdd®NN
can be combined with HMM, or even replace HMM. In the latter
case, the model can be trained “end-to-end”, and for thipqae,
the connectionist temporal classification (CTQ) [9] and RN§ns-
ducer [8] were proposed to deal with the specific evaluatietriam
for sequence labeling. Two special RNN models, Long ShertAr
Memory (LSTM) and Gated Recurrent Unit (GRU) are now wide-
ly used [I0[6] in speech recognition. These methods haweezho
good results in many tasks. One of their limitations referthe d-
ifficulty in training, and in practice, their performancdies heavily
on pre-training.

Several recent works attempted to combine CNN and RNN for
speech recognition. Amodei et al. proposed a CNN-RNN hybrid
model for Large Vocabulary Continuous Speech RecognitidtCe
SR) [4]. Sainath et al. proposed an architecture, whichem{@NN,
LSTM, and MLP [25]. In the two models, however, the CNN mod-
ule and RNN module are separated. A similar combination atkth
was proposed for text classification [16]. Recently, Liahglepro-
posed a deep learning model in which RNN and CNN were tightly
coupled [[18[19]. The hallmark of the model is that theretdrisa-
layer recurrent connections among units in the convolafideyer
of CNN. This model was used in experimentes on static imdgés,
has not been tested on speech data.

3. METHODS

The core module inside RCNN is the Recurrent Convolutiorsidr
(RCL), whose state evolves over discrete time steps. Rewlla



generic RNN usually has a feed-forward inputt) and a hidden

stateh(¢) which depends not only on the input but also the hidden

state in the previous time step:

h(t)

F(x(t),h(t—1),0)

where the functionF describes the dynamic characteristics of the

RNN, with parameted. In conventional RNN,F is realized by a

fully connected weight matrix and a nonlinear activationdiion

o(x):
h(t) = J(th,x(t) + Wh,h,h(t — 1) + bh)

In RCL, the connections are local and share the same weights

across the spectrogram, i.e., RCL is realized by convaiutenote
the feedforward input at positiofi, j) by x(*), and the state of the
hidden layer to b& (", then
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wherew] andwj}, are thek-th feed-forward kernel and recurrent
convolutional kernel, respectively. Both kernels are stat differ-
ent time stepso(z) = fn(g(x)) is a composition of two nonlinear
functions. The inner ong(z) can be either a conventional sigmoid
functiong(z) = 1/(1 4+ e~*) or a rectified linear unit (ReLU) [21]
g(z) = max{z,0}. A model with ReLU usually converges faster
and tends to achieve better performance compared to usngjgh
moid function. However, the faster convergence brings toblpm
of “exploding gradient”, which calls for smaller learningte and
necessary normalization. The outer functjty{-) denotes an appro-
priate normalization function. The batch-normalizatioethod [14]

is adopted here. Specifically, (z:; v, 8) = v&: + 3, wherey and

(3 are trainable parameters, and

g = ZikB
v \/U%‘FG
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Fig. 1. lllustration of a single RCL (left) and its unfolded versio
with 7" = 3 (right). The colored parallelograms in the bottom rep-
resent the input spectrograms. The upper ones stand foidterh
states. The dotted lines denote feed-forward connectiothshee sol-

id lines denote recurrent connections.

shares the advantage of multi-dimensional recurrent heatavork
(MDRNN) [11]}, that is, modeling on recurrent relationshlipray all
possible dimensions not merely temporal dimension.

By stacking several RCLs, and optionally interleaved witlolp
ing layers and other layers, a deep RCNN can be constructad. T
resembles how CNN is constructed based on convolutionarrsay
and other layers. In both computer vision applications greksh
recognition applications, it has been found that addingisé\ful-
ly connected layers (i.e., an MLP) on the top will boost thefqre
mance of CNN[[26[24]. Inspired by this, we focused here on the
RCNN-MLP architecture in experiments.

4. EXPERIMENTS

Two speech processing tasks, phoneme recognition andamobeis-
sification, were considered in our experiments. In phoneznegni-
tion, RCNN was used to predict senones directly. In emotlas-c
sification, RCNN is used for feature extraction, while thassifica-
tion is fulfilled by a support vector machine (SVM). All exjpeents
were carried out on a NVIDIA GeForce GTX Titan Black GPU.

In the equations above, denotes the input feature to be normalized,4.1. Phoneme recognition

#; denotes the normalized featuesjenotes a small constarit)( >
in our experiment)ys denotes the mini-batch mean ang denotes
the mini-batch variance.

In implementation, an RCL is unfolded f@r time steps into a
multi-layer sub-network. See Fif] 1 for an example with= 3.
The receptive field (RF) of each unit expands with lar§erso that
more context information is captured by the unit. The deftthe
subnetwork increases with larg&r, while keeping the number of
parameters constant due to weight sharing across time steps

It is assumed that the input to an RGi(¢) is the same across
time ¢, which is denoted byk,. It is equivalently the output of the
previous layer. This assumption means that the feed-fahpart
contributes equally at every time step.

To understand the essence of the RCL, it is useful to clanigy t
concept of time step in RCL. It is not identical to the timeasated
with the sequential data, and instead it refers tateration during
processing the data. This is in sharp contrast with conveatiRN-
N, whose time step is identical to the time present in the.data
conventional RNN, the current state is updated accordinige@re-
vious state, while an RCL processes information from nedginig
time slots and frequency banks at each iteration. In thisssdRCNN

4.1.1. Dataset

TIMIT recorded 630 speakers, each reading ten phonetically
sentences. The TIMIT corpus was manually segmented andatnno
ed using 61 phonemes. Excluding the SA sentences that akspe
ers read, the training and test sets consist of 3696 and 1i3d4 u
ances, respectively. 192 utterances among the compléteetesre
prescribed to be a core test set. We also report our resultpsa-a
defined development set, a subset of 400 utterances froragheet.
10% (369) utterances were randomly drawn from the trainingaet f
automatically adjusting learning rate during training.

4.1.2. Experimental setup

The raw speech data recorded at a sample rate of 16 kHz was &irst
processed via a short-time Fourier Transform with 40 fittenks
distributed on a mel-scale, into 25 ms-long frames, at destof 10
ms. The first and second temporal derivatives were alsodedu
which were concatenated to be a 120-dimension feature vémto
each frame. The coefficients were then normalized so thgttthe
a mean of 0 and variation of 1 over the training set.



model layer kernel siZe stride  #of channels batch norm devset core test set
CL+pooling CL (15,8) 11) 128

pooling 22 @2 ‘ ; 4-layer MLP 19.9% 22.0%
CL+CL+pooling CL1 (15,8) (1,1) 128 no CL+pooling+3-layer MLP 18.4% 20.0%
CL2 (7.3) (11) 128 no CL1+CL2+pooling+3-layer MLP 19.2% 20.5%
ROL(L)+pool che)gILnfg g ((2121)2) (ali) 108 - RCL(1)+pooling+3-layer MLP 18.3% 20.3%
pooling orwars , , yes .
ROL recurrent 7.9 w1 128 yes RCL(2)+pooI!ng+3-Iayer MLP 17.3% 19.2%
pooling (4,1) (4,1) _ _ RCL(3)+pooling+3-layer MLP 17.5% 19.3%
RCL(2)+pooling  RCL forward (11,2) (1,1) 128 yes RCL(2)+CL+3-layer MLP 17.0% 18.0%
RCL recurrent (15,5) (1,1) 128 yes
pooling 151  (15.1) - . DBN [20] _ _ . 20.7%
RCL(3)+pooling  RCL forward (11,3) (L1 128 yes CNN (limited weight sharing) 1] - 20.5%
RCL recurrent (11,3) (1,2) 128 yes bottleneck CNNI[277] 16.1% 18.6%
ROL@)CL %Ogmg | ((11%'12)) (gll)) D8 - 3-layer LSTM + HMM [30F 17.7% 18.8%
orwar , s yes .
RGL recurrent ©5) 1) 128 ves 3-Iaye.r LSTM + pre-trained transducers [10] - 17.7%
cL (16,2) (1,1) 256 no Attention model[[6] 15.8% 17.6%
time- and frequency- domain convolution [28]  14.2% 17.6%
P - time- and frequency- domain convolution
Table 1. Description of the fir: rt of the model fore the 3+
able escription of the first part of the models before the 3-taye (with dropout) [28] 13.9% 16.7%

MLP used for TIMIT phoneme recognition

Table 2. Results of different models on TIMIT phoneme recogni-

. . tion.
For a frame at time, a patch ranging from— A to ¢+ A on the

time axis was extracted, which included all filter-bank €icefnts

on the frequency axis. The spectrogram fed into a model ag inp
had three channels consisting of static coefficients anfficieats of train decode
the first and second temporal derivatives, respectivelgrdfore, the
input patch was of siz€ x A+1) x40 x 3. In all experimentsA =

5. The network was trained using the stochastic gradientemsc
(SGD) with automatic adjusting of the learning rate. Theirbaich
size was 200. The initial learning rate was set t@l per batch Table 3. Comparison of speed between RCNN and LSTM
and was annealed to half of its original value if the accum@tyhe

validation set stopped increasing. The momentum was 0.9.

To generate the frame-level label, a conventional context-
dependent (CD) HMM of 1954 senones was used with the asséstan propriate size of input for posterior MLP, a pooling layerstiide 15
of the Kaldi toolkit [22]. The phoneme label outputs were megh  was used in most models, which may render a loss of tempdoat in
to the usual set of 39 labels for evaluation. The ultimateltegas  mation. By replacing the pooling layer with a CL, PER deceeb®
based on phoneme error rate (PER). 18.0%.

We tested different models on CNTKI[3], all of which used the . - . .
same 3-layer MLP (each layer had 2048 units) in the end. Then t We compared the results with existing models in the liteeatu
difference between different models would mainly come friia (€€ the lower part of Tabld 2). Our best model outperformesitm
difference in other layers. Tate 1 lists settings of thafemnt lay-  ©f the ANN-HMM hybrid models. The exception was a network-in
ers in different models, where CL denotes convolutionagtayrhe ~ NEWOrk configuration 28], which was trained in two stepn©
number in parentheses for each RCL denotes the number dlunfo Pared with the recently developed RNN-based end-to-endetspd
ing time step<”. All CLs and RCLs used ReLU while all MLP lay- SUch as the RNN transducer [10] and attention madel [6], adeh
ers used sigmoid function as activation function. Besitlestiodels ~ Was also competitive. However, our model converged fasteéd

described in TablE]1, a 4-layer MLP was also tested with 2ad@u Nt Use pre-training. The best modelin|[10], which achievéd %
in every layer. PER, was based on a pre-trained transducer and was traingd4fo

epochs. For RCNN, however, the model was trained withir-2ZZD
epochs from scratch.

RCNN 2012 samples per second  1.721 utterances per second
LSTM 275 samples per second  0.944 utterances per second

4.1.3. Results .
To compare the speed of RCL module with LSTM module, we

The results of these models are listed in Tdble 2. Consigehia  trained a 3-layer LSTM with 1024 cells per layer using CNTK on
same 3-layer MLP among the models, the first model in the tableur GPU server. The structure was borrowed frénmi [30] (the-non
can be called MLP, the second and the third can be called CNiN, a highway version). An HMM, instead of a pretrained transdusas

the models with RCL can be called RCNN. From MLP, CNN to used on top of the LSTM. The mini-batch size was set to 200, the
RCNN, a progressive decrease in PER was observed. The dempasame as for RCNN. Results showed that RCNN was faster both in
son between the 1-layer and 2-layer CNNSs (the second antlitde t training and decoding phases (Table 3). We attribute tHerdifice
models in Tabl€R2) confirmed the fact that for small-scaleesys-  to heavily optimized convolution operation in CNTK.

tacking more convolutional layers may be harmful and carethus

to use a single RCL layer in the RCNN models. We found that un-

folding more time steps may yield lower PER (compare thetfour

and fifth models in Tablgl2) but there was a limit. To achieveyan 3The selection for the development set may vary with diffegerthors.

4The original paper works on another dataset. We use thetsteubere

2The tuple V¢, Nt) corresponds to the frequency- and time- axis, and soonly to compare the speed between RCNN and LSTM so the peafuren
is the stride size. may not be tuned perfectly. See in 4.1 for further discussion




4.2. Emotion recognition
4.2.1. Dataset
The IEMOCAP dataset [5], short for The Interactive Emotiona

® # of correct utterances for emotion
# of utterances for emotion

. 1
Unweighed Accuracy= s

i=1

Dyadic Motion Capture, consists of approximately 12 houfs 04.2.3. Results

audio-visual data and was annotated by multiple annotat®irsce
different annotators may give different judgments, laheith the
majority of annotators were used in order to avoid ambiguitye
only considered utterances with labels from the following fe-
motions: excitement, frustration, happiness, neutral sungbrise.
Among the 5300 utterances left after the filtering proceswoaor-
tion of 80% was randomly selected for training and the reimgin
were used for test.

4.2.2. Experimental setup

The input to the models consisted of 25-frame segments a&ncbih
responding labels. Three models were constructed. Therfodel

We compared the classification accuracy using segmenit-ese
tures from different layers and found that those from thehaiden
layer performed best. All results reported in Table 4 areetbamn
those features. Besides weighted accuracy and unweighteniaa
cy, Tabld% also shows the frame-wise test accuracy durigigeet-
level training. Among the three models, RCNN performed testb
in terms of both weighed and unweighed accuracy. Compartd wi
models in the literature, RCNN has achieved competitivelltes
Note that it is claimed in[12] that using spectral featuresdered
unsatisfactory performance and, as a result, MFCC plub-bé&sed
features were used in[12]. Our results indicate that usi@yR, the
spectral features, the relatively lower level featuren,aao achieve

was an MLP with 3 hidden layers. The second was a CNN consisgood results.

ing of a CL with a 2-hidden-layer MLP. The third was an RCNN
consisting of an RCL with a 2-hidden-layer MLP. Each fullyneo
nected hidden layer had 256 units with the RelLU activatiamcfu
tion. For RCL, the feed-forward kernel siZ&vy, N;) was (9, 9)
and the recurrent kernel siz&v;, N;) was (7, 5), and the number

of unfolding time steps was 2, such that the RCL unit could see
the whole input. The number of channels was 64 for both feed
forward and recurrent part. For comparison, the CL had 128 co

volutional kernel with(Ny, N;) = (9, 9) along with a max pooling
layer of size(2,2) and stride(2, 2) such that the number of learn-
able weights were comparable. Nonlinearity was realizeRélyU
and local response normalization (LRN)[15] with hypergraeters
a=10"°3=0.75k=1n=09.

After segment-level optimization, the segment-level features
were extracted and merged into aterance-level feature for
utterance-level classification according to a previousyst[L2].
Letel) = [f(1),---, 7(D)] denote theD-dimensional feature
extracted from thé-th layer for thes-th segment. For an utterance
with segmentS = {1,---,S}, the utterance-level featué’ is
defined as

0 _ M e _ i e e
f; —rgleagqu ) —rsrggfs f;/ =

1 S
g (1)7}:[752 [fgl)(l)29}7:|

The first three vectors of feature can be viewed as a poolirigen
manner of maximizing, minimizing, and averaging along &-s
ments of a single utterance. The last vector is the percermfgeg-
ments whose activation on each neuron in the feature mapisab
a certain threshold.

After the fixed-length utterance-level features were otgdj an
SVM classifier was trained to predict the utterance-levetls. S-
ince the utterances were not evenly distributed among ematt-
egories, both weighed and unweighed accuracy were cadclufat
evaluation, as if[12]. The weighed accuracy is the accuvadhe
whole test set, with every utterance’s contribution beimg $ame,
while the unweighed accuracy is the averaged accuracy ewvére
motion class, which better reflects overall accuracy in ttes@nce
of an imbalanced class.

1 ifm
S s=1 ’

1

(0 =L

# of correct utterances

Weighed Accuracy= # of utterances

frame-wise  weighed unweighed
accuracy  accuracy  accuracy
3-layer MLP 41.4% 48.5% 39.9%
CL+2-layer MLP 43.1% 53.4% 41.6%
RCL+2-layer MLP 43.5% 53.6% 42.8%
(MFCC + pitch) MLP+SVM [12] - ~ 50% ~45%°
Log Spec + CNNI[31] - - 35.98%
Log Spec + PCA whiten
+ CNN [37] - - 40.02%

Table 4. Speech emotion recognition results on IEMOCAP

5. CONCLUSIONSAND FUTURE WORK

Recently, a deep learning model called recurrent conanatineu-
ral network (RCNN) was proposed for performing computefovis
tasks. In this work, we proposed to use this model for speech p
cessing. Experimental results on two benchmark datasetsesh
that it was competitive with existing models. We concludat tinis
structure can be used for processing both image and speecmaz
tion efficiently, which may inspire more generic and effitieross-
modal deep learning models in the future.
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