
A Proofs of Theorems

A.1 Proof of Theorem 1

Proof. Under the assumption that the MDP is deterministic and all states are strongly connected,
there exists at least one shortest state trajectory from s to g. Without loss of generality, we consider
one shortest state trajectory τ∗ = (s0, s1, s2, · · · , sn−1, sn), where s0 = s, sn = ϕ−1(g) and
dst

(
s, ϕ−1(g)

)
= n. For all k ∈ N+ and k ≤ dst

(
s, ϕ−1(g)

)
= n, let g̃ = ϕ(sk), and let

τ = (s0, s1, s2, · · · , sk) be the k-step sub-trajectory of τ∗ from s0 to sk. Since s0 and sk is
connected by τ in k steps, we have that dst

(
s0, ϕ

−1(g̃)
)

= dst (s0, sk) ≤ k, i.e., g̃ ∈ GA(s, k). In
the following, we will prove that π∗(si, g̃) = π∗(si, g), ∀ si ∈ τ (i 6= k).

We first prove that the shortest transition distance dst satisfies the triangle inequality, i.e., consider
three arbitrary states s1, s2, s3 ∈ S, then dst(s1, s3) ≤ dst(s1, s2) + dst(s2, s3): let τ∗12 be one
shortest state trajectory between s1 and s2 and let τ∗23 be one shortest state trajectory between s2 and
s3. We can concatenate τ∗12 and τ∗23 to form a trajectory τ13 = (τ∗12, τ

∗
23) that connects s1 and s3.

Then, by Definition 1 we have dst(s1, s3) ≤ dst(s1, s2) + dst(s2, s3).

Using the triangle inequality, we can prove that the sub-trajectory τ = (s0, s1, s2, · · · , sk) is also
a shortest trajectory from s0 = s to sk: assume that this is not true and there exists a shorter
trajectory from s0 to sk. Then, by Definition 1 we have dst(s0, sk) < k. Since (sk, sk+1, · · · , sn)
is a valid trajectory from sk to sn, we have dst(s0, sk) ≤ n − k. Applying the triangle inequality,
we have dst(s0, sn) ≤ dst(s0, sk) + dst(sk, sn) < k + n − k = n, which is in contradiction with
dst

(
s, ϕ−1(g)

)
= dst(s0, sn) = n. Thus, our original assumption must be false, and the trajectory

τ = (s0, s1, s2, · · · , sk) is a shortest trajectory from s0 to sk.

Finally, let α : S × S → A be an inverse dynamics model, i.e., given state st and the next state st+1,
α(st, st+1) outputs the action at that is performed at st to reach st+1. Then, employing Equation (3),
for i = 0, 1, · · · , k− 1 we have π∗(si, g) = α(si, si+1) given that τ∗ is a shortest trajectory from s0

to ϕ−1(g), and π∗(si, g̃) = α(si, si+1) given that τ is a shortest trajectory from s0 to ϕ−1(g̃). This
indicates that π∗(si, g̃) = π∗(si, g), ∀ si ∈ τ (i 6= k).

A.2 Proof of Theorem 2

Proof. Using Theorem 1, we have that for each subgoal gkt, t = 0, 1, · · · , T − 1, there exists a
subgoal g̃kt ∈ GA(skt, k) that can induce the same low-level k-step action sequence as gkt. This
indicates that the agent’s trajectory and the high-level reward rhkt defined by Equation (1) remain the
same for all t when replacing gkt with g̃kt. Then, using the high-level Bellman optimality equation
for the optimal Q function

Q∗(skt, gkt) = rhkt + γmax
g∈G

Q∗(sk(t+1), g)

= rhkt + γQ∗(sk(t+1), gk(t+1)), t = 0, 1 · · · , T − 1
(14)

and Q∗(skT , g) = 0, ∀ g ∈ G as skT is the final state of τ∗, we have Q∗(skt, g̃kt) =
Q∗(skt, gkt), t = 0, 1, · · · , T − 1.

B Implementation Details

B.1 Adjacency Learning

Constructing and updating the adjacency matrix. We use the agent’s trajectories to construct
and update the adjacency matrix. Concretely, the adjacency matrix is initialized to an empty matrix
at the beginning of training. Each time when the agent explores a new state that it has never visited
before, the adjacency matrix is augmented by a new row and a new column with zero elements,
representing the k-step adjacent relation between the new state and explored states. When the
temporal distance between two states in one trajectory is not larger than k, then the corresponding
element in the adjacency matrix will be labeled to 1, indicating the adjacency. (The diagnoal of
the adjacency matrix will always be labeled to 1.) Although the temporal distance between two
states based on a single trajectory is often larger than the real shortest transition distance, it can

13

A

s2

s1

(a)
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.1 0.0 0.1 0.2
0.2

0.1

0.0

0.1

0.2

0.3

0.4 s1

s2

(b)

0
2
4
6
8
10
12
14
16
18

0
2
4
6
8
10
12
14
16
18

0.2 0.1 0.0 0.1 0.2
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

s1
s2

(c)

Figure 11: Qualitative comparison of adjacency learning methods. (a) Environment layout. The agent
starts from the grid A. (b) Results of our method, including the adjacency heatmaps from states s1,
s2 and the LLE visualization of state embeddings. (c) Results of the method proposed by Savinov et
al. [34, 35], including the adjacency heatmaps from states s1, s2 and the LLE visualization of state
embeddings.

be easily shown that the adjacency matrix with this labeling strategy can converge to the optimal
adjacency matrix asymptotically with sufficient trajectories sampled by different policies. In practice,
we employ a trajectory buffer to store newly-sampled trajectories, and update the adjacency matrix
online in a fixed frequency using the stored trajectories. The trajectory buffer is cleared after each
update.

Training the adjacency network. The adjacency network is trained by minimizing the objective
defined by Equation (11). We use states evenly-sampled from the adjacency matrix (i.e. from the
set of all explored states) to approximate the expectation, and train the adjacency network each time
after the adjacency matrix is updated with new trajectories. Note that by explicitly aggregating the
adjacency information using an adjacency matrix, we are able to achieve the uniform sampling of all
explored states and thus achieve a nearly unbiased estimation of the expectation, which cannot be
realized when we directly sample state-pairs from the trajectories (see the following comparison with
the work by Savinov et al. [34, 35] for details).

Embedding all subgoals with a single adjacency network is enough to express adjacency when the
environment is reversible. However, when this condition is not satisfied, it is insufficient to express
directional adjacency using one adjacency network, as the parameterized approximation defined by
Equation (10) is symmetric for s1 and s2. In this case, one can use two separate sub-networks to
embed g1 and g2 in Equation (10) respectively using the structure proposed in UVFA [36].

Comparison with the work by Savinov et al. Savinov et al. [34, 35] also propose a supervised
learning approach for learning the adjacency between states. The main differences between our
method and theirs are: 1) We use trajectories sampled by multiple policies to construct training
samples, while they only use trajectories sampled by one specific policy; 2) We use an adjacency
matrix to explicitly aggregate the adjacency information and sample training pairs based on the
adjacency matrix, while they directly sample training pairs from trajectories. These differences
lead to two advantages of our method: 1) By using multiple policies, we achieve a more accurate
adjacency approximation, as shown by Equation (9); 2) By maintaining an adjacency matrix, we can
uniformly sample from the set of all explored states and realize a nearly unbiased estimation of the
expectation in Equation (11), while the estimation by sampling state-pairs from trajectories is biased.
As an example, consider a simple grid world in Figure 11(a), where states are represented by their
(x, y) positions. In this environment, states s1 and s2 are non-adjacent since they are separated by
a wall. However, it is hard for the method by Savinov et al. to handle this situation as these two

14

Algorithm 1 HRAC
Input: High-level policy πhθh parameterized by θh, low-level policy πlθl parameterized by θl,
adjacency network ψφ parameterized by φ, state-goal mapping function ϕ, goal transition function
h, high-level action frequency k, number of training episodes N , adjacency learning frequency C,
empty adjacency matrixM, empty trajectory buffer B.

Sample and store trajectories in the trajectory buffer B using a random policy.
Construct the adjacency matrixM using the trajectory buffer B.
Pre-train ψφ usingM by minimizing Equation (11).
Clear B.
for n = 1 to N do

Reset the environment and sample the initial state s0.
t = 0.
repeat

if t ≡ 0 (mod k) then
Sample subgoal gt ∼ πhθh(g|st).

else
Perform subgoal transition gt = h(gt−1, st−1, st).

end if
Sample low-level action at ∼ πlθl(a|st, gt).
Sample next state st+1 ∼ P(s|st, at).
Sample reward rt ∼ R(r|st, at).
Sample episode end signal done.
t = t+ 1.

until done is true.
Store the sampled trajectory in B.
Train high-level policy πhθh according to Equation (12) and (13).
Train low-level policy πlθl .
if n ≡ 0 (mod C) then

Update the adjacency matrixM using the trajectory buffer B.
Fine-tune ψφ usingM by minimizing Equation (11).
Clear B.

end if
end for

states rarely emerge in the same trajectory due to the large distance, and thus the loss induced by this
state-pair is very likely to be dominated by the loss of other nearer state-pairs. Meanwhile, our method
treat the loss of all state-pairs equally, and can therefore alleviate this phenomenon. Empirically,
we employed a random agent (since the random policy is stochastic, it can be viewed as multiple
deterministic policies, and is enough for adjacency learning in this simple environment) to interact
with the environment for 20, 000 steps, and trained the adjacency network with collected samples
using both methods. We visualize the LLE of state embeddings and two adjacency distance heatmaps
by both methods respectively in Figure 11(b) and 11(c). Visualizations validate our analysis, showing
that our method does learn a better adjacency measure in this scenario.

B.2 Algorithm Pseudocode

We provide Algorithm 1 to show the training procedure of HRAC. Some training details are omitted
for brevity, e.g. the detailed training process of the low-level policy.

B.3 Environment Details

Maze. This environment has a size of 13×17, with a discrete 2-dimensional state space representing
the (x, y) position of the agent and a discrete 4-dimensional action space corresponding to actions
moving towards four directions. The agent is provided with a dense reward to facilitate exploration,
i.e., +0.1 each step if the agent moves closer to the goal, and −0.1 each step if the agent moves

15

farther. Each episode has a maximum length of 200. Environmental stochasticity is introduced by
replacing the action of the agent by a random action each step with a probability of 0.25.

Key-Chest. This environment has a size of 13× 17, with a discrete 3-dimensional state space in
which the first two dimensions represent the (x, y) position of the agent respectively, and the third
dimension represents whether the agent has picked up the key (1 if the agent has the key and 0
otherwise). The agent has the same action space as the Maze task. The agent is provided with sparse
reward of +1 and +5, respectively for picking up the key and opening the chest. Each episode ends
if the agent opens the chest or runs out of the step limit of 500. The random action probability of the
environment is also 0.25.

Ant Gather. This environment has a size of 20× 20, with a continuous state space including the
current position and velocity, the current time step t, and the depth readings defined by the stardard
Gather environment [6]. We use the ant robot pre-defined by Rllab, with a 8-dimensional continuous
action space. The ant robot is spawned at the center of the map and needs to gather apples while
avoiding bombs. Both apples and bombs are randomly placed in the environment at the beginning of
each episode. The agent receives a positive reward of +1 for each apple and a negative reward of −1
for each bomb. Each episode terminates at 500 time steps.

Ant Maze. This environment has a size of 24 × 24, with a continuous state space including the
current position and velocity, the target location, and the current time step t. In the training stage,
the environment randomly samples a target position at the beginning of each episode, and the agent
receives a dense reward at each time step according to its negative Euclidean distance from the target
position. At evaluation stage, the target position is fixed to (0, 16), and the success is defined as being
within an Euclidean distance of 5 from the target. Each episode ends at 500 time steps. In practice,
we scale the environmental reward by 0.1 equally for all methods.

Ant Maze Sparse. This environment has a size of 20× 20, with the same state and action spaces
as the Ant Maze task. The target position (goal) is set at the position (2.0, 9.0) in the center corridor.
The agent is rewarded by +1 only if it reachs the goal, which is defined as having a Euclidean distance
that is smaller than 1 from the goal. At the beginning of each episode, the agent is randomly placed
in the maze except at the goal position. Each episode is terminated if the agent reaches the goal or
after 500 steps.

B.4 HRAC and Baseline Details

We use PyTorch to implement our method HRAC and all the baselines.2

HRAC. For discrete control tasks, we adopt a binary intrinsic reward setting: we set the intrinsic
reward to 1 when |sx − gx| ≤ 0.5 and |sy − gy| ≤ 0.5, where (sx, sy) is the position of the agent
and (gx, gy) is the position of the desired subgoal. For continuous control tasks, we adopt a dense
intrinsic reward setting based on the negative Euclidean distances −‖s − g‖2 between states and
subgoals.

HIRO. Following Nachum et al. [26], we restrict the output of high-level to (±10, ±10), repre-
senting the desired shift of the agent’s (x, y) position. By limiting the range of directional subgoals
generated by the high-level, HIRO can roughly control the Euclidean distance between the absolute
subgoal and the current state in the raw goal space rather than the learned adjacency space.

HRL-HER. As HER cannot be applied to the on-policy training scheme in a straightforward
manner, in discrete control tasks where the low level policy is trained using A2C, we modify its
implementation so that it can be incorporated into the on-policy setting. For this on-policy variant,
during the training phase, we maintain an additional episodic state memory. This memory stores states
that the agent has visited from the beginning of each episode. When the high-level generates a new
subgoal, the agent randomly samples a subgoal mapped from a stored state with a fixed probability
0.2 to substitute the generated subgoal for the low-level to reach. This implementation resembles

2We use the open source PyTorch implementation of HIRO at https://github.com/bhairavmehta95/
data-efficient-hrl.

16

https://github.com/bhairavmehta95/data-efficient-hrl
https://github.com/bhairavmehta95/data-efficient-hrl

the “episode” strategy introduced in the original HER. We still use the original HER in continuous
control tasks.

NoAdj. We follow the training pipeline proposed by Savinov et al. [34, 35], where no adjacency
matrix is maintained. Training pairs are constructed by randomly sampling state-pairs (si, sj) from
the stored trajectories. The samples with |i − j| ≤ k are labeled as positive with l = 1, and the
samples with |i− j| ≥Mk are negative ones with l = 0. The hyper-parameter M is used to create a
gap between the two types of samples, where in practice we use M = 4.

NegReward. In this variant, every time the high-level generates a subgoal, we use the adjacency
network to judge whether it is k-step adjacent. If the subgoal is non-adjacent, the high-level will be
penalized with a negative reward −1.

B.5 Network Architecture

For the hierarchical policy network, we employ the same architecture as HIRO [26] in continuous
control tasks, where both the high-level and the low-level use TD3 [13] algorithm for training.
In discrete control tasks, we use two networks consisting of 3 fully-connected layers with ReLU
nonlinearities as the low-level actor and critic networks of A2C (our preliminary results show that
the performances using on-policy and off-policy methods for the low-level training are similar in the
discrete control tasks we consider), and use the same high-level TD3 network architecture as the
continuous control task. The size of the hidden layers of both low-level actor and critic is (300, 300).
The output of high-level actor is activated using the tanh function and scaled to fit the size of the
environments.

For the adjacency network, we use a network consisting of 4 fully-connected layers with ReLU
nonlinearities in all tasks. Each hidden layer of the adjacency network has the size of (128, 128).
The dimension of the output embedding is 32.

We use Adam optimizer for all networks.

B.6 Hyper-parameters

We list all hyper-parameters we use in the discrete and continuous control tasks respectively in Table 1
and Table 2, and list the hyper-parameters used for adjacency network training in Table 3. “Ranges”
in the tables show the ranges of hyper-parameters considered, and the hyper-parameters without
ranges are not tuned.

C Additional Visualizations

We provide additional subgoal and adjacency heatmap visualizations of the Maze and Key-Chest
tasks respectively in Figure 12 and Figure 13.

17

Table 1: Hyper-parameters used in discrete control tasks. “K-C” in the table refers to “Key-Chest”.

Hyper-parameters Values Ranges

High-level TD3

Actor learning rate 0.0001
Critic learning rate 0.001
Replay buffer size 10000 / 20000 for Maze / K-C {10000, 20000}
Batch size 64
Soft update rate 0.001
Policy update frequency 2 {1, 2}
γ 0.99
High-level action frequency k 10
Reward scaling 1.0
Exploration strategy Gaussian (σ = 3.0/5.0 for Maze / K-C) {3.0, 5.0}
Adjacency loss coefficient η 20 {1, 5, 10, 20}

Low-level A2C

Actor learning rate 0.0001
Critic learning rate 0.0001
Entropy weight 0.01
γ 0.99
Reward scaling 1.0

Table 2: hyper-parameters used in continuous control tasks.

Hyper-parameters Values Ranges

High-level TD3

Actor learning rate 0.0001
Critic learning rate 0.001
Replay buffer size 200000
Batch size 128
Soft update rate 0.005
Policy update frequency 1
γ 0.99
High-level action frequency k 10
Reward scaling 0.1 / 1.0 for Ant Maze / others {0.1, 1.0}
Exploration strategy Gaussian (σ = 1.0) {1.0, 2.0}
Adjacency loss coefficient η 20 {1, 5, 10, 20}

Low-level TD3

Actor learning rate 0.0001
Critic learning rate 0.001
Replay buffer size 200000
Batch size 128
Soft update rate 0.005
Policy update frequency 1
γ 0.95
Reward scaling 1.0
Exploration strategy Gaussian (σ = 1.0)

18

Table 3: Hyper-parameters used in adjacency network training.

Hyper-parameters Values Ranges

Adjacency Network

Learning rate 0.0002
Batch size 64
εk 1.0
δ 0.2
Steps for pre-training 50000
Pre-training epochs 50
Online training frequency (steps) 50000
Online training epochs 25

A

G

g

G

A
g

G g

A

G
A
g

G

g
A

G

g A

g
G

A

A

g

G

A

G

g

G

A

g

G
g A g

A A

Figure 12: Additional subgoal and adjacency heatmap visualizations of the Maze task, based on a
single evaluation run. The agent (A), goal (G) and subgoal (g) at different time steps in one episode
are plotted. Colder colors in the adjacency heatmaps represent smaller shortest transition distances.

19

K

A g

K

C A g

K

C A

g

K

C A

g K

C

g

A

g

K

C

A g

C

A A
K

g

C

A

C

g

C

A

g

C

A g

C

A

g

C

A

g C g A C g
A

g A g
A

Figure 13: Additional subgoal and adjacency heatmap visualizations of the Key-Chest task, based on
a single evaluation run. The agent (A), key (K), chest (C) and subgoal (g) at different time steps in
one episode are plotted. Colder colors in the adjacency heatmaps represent smaller shortest transition
distances.

20

