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Comparison of �1-Norm SVR and Sparse Coding
Algorithms for Linear Regression

Qingtian Zhang, Xiaolin Hu, and Bo Zhang

Abstract— Support vector regression (SVR) is a popular function
estimation technique based on Vapnik’s concept of support vector
machine. Among many variants, the �1-norm SVR is known to be good
at selecting useful features when the features are redundant. Sparse
coding (SC) is a technique widely used in many areas and a number
of efficient algorithms are available. Both �1-norm SVR and SC can be
used for linear regression. In this brief, the close connection between
the �1-norm SVR and SC is revealed and some typical algorithms are
compared for linear regression. The results show that the SC algorithms
outperform the Newton linear programming algorithm, an efficient
�1-norm SVR algorithm, in efficiency. The algorithms are then used to
design the radial basis function (RBF) neural networks. Experiments on
some benchmark data sets demonstrate the high efficiency of the SC algo-
rithms. In particular, one of the SC algorithms, the orthogonal matching
pursuit is two orders of magnitude faster than a well-known RBF network
designing algorithm, the orthogonal least squares algorithm.

Index Terms— Newton linear programming (NLP), radial basis
function (RBF) neural network, regression, sparse coding (SC),
support vector machine (SVM).

I. INTRODUCTION

The support vector machine (SVM) is a famous learning algorithm
proposed in [1] and [2]. It is one of the most popular models for
both classification [3], [4] and regression [5], [6]. There is an
important model for regression, termed the �1-norm support vector
regression (SVR), which is able to identify the critical features
for regression. This is useful in applications where a lot of noisy
and redundant features are present, e.g., regression for biological
experiment data. In general, the �1-norm SVR can be posed as a
linear programming (LP) problem. Then, the standard LP solvers,
such as the simplex algorithm [7] and the interior point algorithm [8]
can be used to solve it. However, for large-scale problems, some
more efficient algorithms are available and a popular one is the
Newton LP (NLP) algorithm [9].

Sparse coding (SC) is an algorithm for finding a succinct represen-
tation of stimuli [10]. Given a set of bases, SC reduces to an �1-norm
minimization problem, which amounts to finding the minimum
�1-norm solution to an undetermined linear system y = Bx,
where y is the stimuli, B is the basis matrix, and x is a
representation of y under the basis matrix. In what follows, we
always assume that the bases are given in SC. In the past few years,
a number of efficient SC algorithms have been proposed, such as
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matching pursuit (MP) [11], [12], homotopy (HOM) [13]–[15],
feature sign search (FSS) [16], and so on. These algorithms
have been applied in many real-world problems, such as face
recognition [17] and image classification [18].

Both �1-norm SVR and SC are �1-minimization problems, and
there should be some connections between them, though few
researches have addressed this issue. We show that, �1-norm
SVR with Gaussian loss function [19] is equivalent to SC with
�2-norm penalty term, namely, least absolute shrinkage and selection
operator (LASSO). Then, both algorithms can be used to solve
linear regression problem. But it is unclear which one is more
efficient. Through extensive experiments we will show that many
SC algorithms are indeed more efficient.

Some notations are introduced first. For x ∈ R
n and p ∈ [1,∞),

||x||p denotes the �p-norm of x : (∑n
i=1 |xi |p)1/p. Let e denotes

a column vector of all ones. For a, b ∈ R
n , aT b denote the inner

product of vectors a and b.

II. RELATIONSHIP BETWEEN �1-NORM SVR AND SC
A. �1-Norm SVR

Given an unknown system f : R
n−1 → R that transforms the

input vector x̃ ∈ R
n−1 to a real number f (x̃). The objective of SVR

is to estimate f (x̃) by observing m training instances (x̃1, f (x̃1)),
(x̃2, f (x̃2)), . . . , (x̃m , f (x̃m )). For linear SVR, f takes the form

f (x̃) = w̃T x̃ + b with w̃ ∈ R
n−1, b ∈ R. (1)

By introducing x =
( x̃

1

)
∈ R

n and w =
( w̃

b

)
∈ R

n , (1) can be

written in the homogeneous form

f (x) = wT x. (2)

The primal problem of �1-norm SVR is

min ||w||1
s.t. yi = wT xi , i = 1, 2, . . . ,m. (3)

In real-world applications, the output yi may be corrupted by some
unknown distributed noise. A number of loss functions L(x, y, f (x)),
and a penalty term eT ξ have been introduced into (3) to cope with
the noise. The formulation becomes

min ||w||1 + CeT ξ

s.t. L(xi , yi , f (xi )) ≤ ξi , i = 1, 2, . . . ,m, ξi ≥ 0 (4)

where C > 0 is a constant controlling the tradeoff between
the regularization of f and the deviation tolerated. Different loss
functions suit for different problems. Among them, the ε-insensitive
loss function

L(x, y, f (x)) = max{|y − f (x)| − ε, 0} (5)

is one of the most commonly used loss functions, where ε is a
prespecified value. With the ε-insensitive loss function, the formula-
tion becomes

min ||w||1 + CeT ξ

s.t. |yi − wT xi | ≤ ε + ξi , i = 1, 2, . . . ,m, ξi ≥ 0. (6)
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Note that this formulation can be recast into an LP problem and many
efficient LP algorithms, such as [9] can be used to solve it. With the
Gaussian loss function

L(x, y, f (x)) = 1

2
(y − f (x))2 (7)

the formulation becomes

min ||w||1 + CeT ξ

s.t. (yi − wT xi )
2 ≤ ξi , i = 1, 2, . . . ,m. (8)

The Gaussian-type noise is very common in practice and the Gaussian
loss function matches the Gaussian distribution noise density model in
the maximum likelihood sense under the assumption that the samples
are generated by an underlying functional dependence plus additive
noise [19]. One disadvantage of (8), compared with (6), seems to
be that it cannot be recast into an LP problem and in the sequel
cannot take advantages of LP solvers. But in what follows we will
show that this is actually computationally advantageous because there
exist many efficient algorithms for solving it. One should note that
with Gaussian noise, the notion of support vector is meaningless.
We call the problem SVR following the convention of [19].

B. Sparse Coding

Given an input signal y ∈ R
m and a basis matrix X ∈ R

m×n ,
each column of X is a basis vector, and n is the number of basis
vectors. The goal of SC is to represent the input signal as a weighted
sum of a small number of basis vectors y = Xw, where w is sparse,
which means that most elements of w are zero. The basis set is often
overcomplete, that is, n > m. Thus, SC is a nontrivial linear inversion
problem. A popular formulation of SC is as follows [20]:

min ||w||1
s.t. y = Xw (9)

which is actually the matrix form of (3). One should note that the
columns of X (bases) do not correspond to the training points xi
in SVR; the rows of X do.

However, most signals in real-world applications cannot be
represented perfectly and it is necessary to introduce a penalty term
to deal with the noise in the signal. The �2-norm penalty is often
used and the formulation becomes

min ||w||1 + Cξ

s.t. ||y − Xw||22 ≤ ξ. (10)

C. Relationship Between �1-Norm SVR and SC

We have shown that the ideal forms of the �1-norm SVR (3) and
the SC (9) are exactly the same. However, most of the time we do
not solve these ideal cases directly. Noise must be considered and
the formulations (8) and (10) are more often used. The following
proposition shows that they are equivalent to each other.

Theorem 1: The �1-norm SVR with Gaussian loss function (8) is
equivalent to the SC with �2-norm penalty term (10).

Proof: The Lagrangian function of (8) is

L1 := ||w||1 + CeT ξ +
m∑

i=1

αi ((yi − wT xi )
2 − ξi ) (11)

where αi ≥ 0, i = 1, 2, . . . ,m are Lagrangian multipliers. It follows
from the saddle point theorem that the optimal ξi ’s have to vanish:

∂L1

∂ξi
= C − αi = 0. (12)

Substituting (12) into (11) yields an equivalent optimizing problem
to (8)

min ||w||1 + C
m∑

i=1

(yi − wT xi )
2. (13)

The Lagrangian function of (10) is

L2 := ||w||1 + Cξ + β
(||y − Xw||22 − ξ

)
(14)

where β ≥ 0 is the Lagrangian multiplier. With similar arguments to
above we have

∂L2

∂ξ
= C − β = 0. (15)

Substituting (15) into (14) yields an equivalent form of (10)

min ||w||1 + C||y − Xw||22. (16)

This formulation is the same as (13) with X = (x1, x2, . . . , xm )
T .

Therefore, (8), (10), (13), and (16) are equivalent.
Equation (16) is often called LASSO. In other words, the �1-norm

SVR with Gaussian-type noise is actually a LASSO problem.

III. ALGORITHMS FOR COMPARISON

Several efficient algorithms for �1-norm SVR and SC problems
are briefly reviewed in this section.

A. Newton Linear Programming
Consider a general LP problem

min cT x + dT y

s.t. Ax + B y ≥ b, E x + G y = h, x ≥ 0 (17)

where x ∈ R
n and y ∈ R

l are variables and c ∈ R
n , d ∈ R

l ,
A ∈ R

m×n , B ∈ R
m×l , E ∈ R

k×n , G ∈ R
k×l , b ∈ R

m , and h ∈ R
k

are constants, and its dual

min bT u + hT v

s.t. AT u + ET v ≤ c, BT u + GT v = d, u ≥ 0 (18)

where u ∈ R
m and v ∈ R

k are variables. The NLP algorithm applies
the Newton method to solve the exterior penalty function for the dual
problem

min ε(−bT u − hT v)+ 1

2
(||(AT u + ET v − c)+||2

+||BT u + GT v − d||2 + ||(−u)+||2) (19)

which is a completely unconstrained differentiable piecewise-
quadratic function that contains a single finite parameter. Both
�1-norm support vector classification and �1-norm SVR can be
written in the form of (17), and thus can be solved using NLP.
An NLP is proved faster than the simplex algorithm and interior
point algorithm for �1-norm SVM classification problem [21] and
regression problem [22] when the number of features are larger than
the number of samples.

B. Orthogonal Matching Pursuit

The orthogonal MP (OMP) method [11] is a greedy algorithm for
solving (9). With a finite bases set of size n, OMP converges to the
projection of y onto the span of the basis vectors in no more than
n iterations. It is a recursive method based on the MP algorithm [23].
It maintains full backward orthogonality of the residual at every step
and thereby leads to improved convergence. The kth iteration of the
OMP results in an intermediate representation of y in the form

y =
k∑

i=1

wi xi + Rk ( y) = yk + Rk ( y) (20)
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where yk is the current approximation and Rk( y) is the current
residual. The improvement of OMP based on MP is that it requires
〈Rk ( y), xi 〉 = 0. With a limited number of iterations N , where
N <= n, OMP obtains the best approximation of y using the N
basis vectors that have been selected from the basis matrix such that
||RN ( y)||22 is minimum. OMP was shown to be the most effective
algorithm for noise-free data among many SC algorithms for face
recognition [17].

C. Homotopy

The HOM algorithm [13]–[15] is an iterative method for
solving (16). An HOM exploits the fact that the objective func-
tion F(w) undergoes a HOM from the �2-norm constraint to the
�1-norm objective (16) as C increases. One can further show that
the solution path is piecewise constant as a function of C . Therefore,
we can get the solution path by constructing an increasing sequence
of C . It is only necessary to identify those breakpoints that lead
to changes of the support set of w∗

C , namely, either a new nonzero
coefficient (N0C) added or a previous N0C removed. If the ground
truth signal w has at most k nonzero components with k 
 n, HOM
can recover w in k iterations. It was reported that HOM achieved the
highest face recognition accuracy, while the computational cost was
comparable with other SC algorithms [17].

D. Alternating Direction Method

The alternating direction method (ADM) [24] is a fast algorithm
for solving the following structured optimization problem:

min f (x)+ g( y)

s.t. Ax + B y = b (21)

where x ∈ R
m , y ∈ R

n , and b ∈ R
p . f (x) : R

m → R and
g( y) : R

n → R are both convex functions. It is obvious that x and y
are decoupled in the objective function, and coupled only in the
constraint. The ADM utilizes the decoupled structure and replaces
the joint minimization by two simpler subproblems. Specially, ADM
minimizes x and y separately via a Gauss–Seidel type iteration.

Rewrite (16) as follows:

min ||w||1 + C||r||22
s.t. XT w + r = y. (22)

Then, ADM can be applied. The ADM was reported to be efficient
with random Gaussian basis set [17].

E. Feature Sign Search

The FSS method [16] also solves (16). The basic idea is to treat it
as an unconstrained quadratic optimization problem. If we know the
sign of wi at the optimal value, we can replace each of the terms |wi |
with either wi (if wi > 0), −wi (if wi < 0), or 0 (if wi = 0).
Then, the problem becomes a standard unconstrained quadratic
optimization problem, which can be solved analytically. The goal of
the FSS method degenerates to search the correct signs of wi . The
algorithm proceeds in a series of feature-sign steps. At each step,
it computes the analytical solution to the problem with current signs
of wi and updates the solution and the signs of wi with an efficient
line search strategy. Each step will reduce the objective function, and
the overall algorithm always converges to the optimal solution. An
FSS was shown to be much faster than least angle regression [25]
and grafting method [26] for learning sparse representation of natural
image patches [16].

Fig. 1. Comparison of the six algorithms with fixed n = 1000 and k = 100.
The curves show the average over 50 trials and the error bars show the standard
deviation.

IV. NUMERICAL COMPARISONS

We compared the SC algorithms described in the previous section
with NLP on some linear regression problems. Notice that both
(3) and (6) can be recast as LP problems and NLP was applied on both
of them. The algorithms are denoted by NLP0 and NLPE, respec-
tively. All algorithms were implemented in MATLAB and tested on
the same PC (Intel Core i5-3450 CPU 3.50 GHz, RAM 4.0 GB).

We designed the regression problems as follows. The sample
matrix X ∈ R

m×n was generated as a random Gaussian matrix. Each
entry in the matrix was independent and identically distributed, and
every column vector was normalized to unit �2-norm. Randomly set k
entries in the ground truth w0 to be nonzero and the others zero. The
nonzero values were drawn from a uniform distribution in [−5, 5].
The observed value y was calculated as y = Xw0. Then, a Gaussian
distribution noise was added to y. The signal to noise ratio is 20 dB.
To measure how the training time of each algorithm changes with
different m, n, and k, two parameters were fixed while the other
one was varied. The parameters of each algorithm were tuned by
cross-validation on a particular data set size (m = 500, n = 1000,
and k = 100).

The following quantities were used for evaluating the performances
of the algorithms.

1) Precision: TP/TP + FP, where TP stands for the number of
true positive samples and FP stands for the number of false
positive samples. Here, a nonzero element in the learned w

is called a true positive sample if the corresponding element
in w0 is also nonzero; otherwise it is called a false positive
sample.

2) Recall: TP/TP + FN, where TP is the same as above and FN
stands for the number of false negative samples. Here, a zero
element in the learned w is called a false negative sample if
the corresponding element in w0 is nonzero.

3) Error Rate: ||w − w0||2/||w0||2.
4) logT: The training time (seconds) in log10.

First, we fixed n and k to 1000 and 100, respectively, and
increased m from 100 to 1000 with a step size of 60. We had the
following observations (Fig. 1).

1) As the sample size m increased, the quality of solutions
obtained by all algorithms also increased (higher precision and
recall, and smaller testing error).
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Fig. 2. Comparison of the six algorithms with fixed m = 500 and k = 100.
The curves show the average over 50 trials and the error bars show the standard
deviation.

2) With m ≤ 500, none of the algorithms found the ground truth
solution.

3) With m > 500, OMP obtained the ground truth solution with
100% precision and recall. While other algorithms obtained an
approximate solution which was very close to the ground truth
solution.

4) With m > 500, the SC algorithms were much faster than the
two NLP algorithms.

Second, we fixed m and k to 500 and 100, respectively, and
increased n from 500 to 1500 with a step size of 125. We had the
following observations (Fig. 2).

1) All algorithms obtained high-quality solutions with a very small
testing error and 100% recall.

2) As the number of redundant features grew, the precision of all
algorithms decreased linearly. The OMP was more robust to
the redundant features than other algorithms.

3) NLP0 and NLPE took much longer training time than the
SC algorithms.

Finally, m and n were fixed to 500 and 1000, respectively, and
k was increased from 50 to 250 with a step size of 15 (Fig. 3).
The error rate of all algorithms were nearly zero when k < 100.
All SC algorithms ran much faster than NLP0 and NLPE. The
OMP and ADM were again the first and second in speed and OMP
selected the N0Cs perfectly. But when the ground truth solution
became dense (larger k), the average error rates of all algorithms
blew up very quickly and their precision and recall dropped down
dramatically. The OMP was most affected by dense ground truth
solutions, while ADM and FSS were most robust to dense ground
truth solutions.

In all of the three scenarios discussed above, NLP0 and NLPE
obtained solutions of similar quality, but the latter always took longer
training time. It is because that both algorithms solved the problem
in the dual space but the formulation (6) of NLPE has double number
of dual variables as the formulation (3) of NLP0.

Overall, on this synthetic problem, when the samples were enough
or the useful features were sparse enough, OMP performed best,
which followed ADM.

In general, increasing the sample size, the number of nonzero ele-
ments in the ground truth, or decreasing sample dimension make the
problem easier (higher precision and recall and smaller testing error).
Likewise, increasing the samples size also has the knock on effect

Fig. 3. Comparison of the six algorithms with fixed m = 500 and n = 1000.
The curves show the average over 50 trials and the error bars show the standard
deviation.

Fig. 4. Structure of the RBF network with a single output neuron.

of increasing training time as there is more data to process. But in
our results, the training times of SC algorithms decreased at first
then slowly increased as the sample size increased. It is because
the initial sample size was not enough for SC algorithms to get a
reasonable solution (Fig. 1). They spent more time on searching the
solution.

V. DESIGN OF RBF NEURAL NETWORK

The radial basis function (RBF) neural network is widely used
for nonlinear system modeling and identification due to their simple
topology [27]. Let x ∈ R

n denote the input of the network. The
output is

y =
M∑

j=1

θ jψ(||x − c j ||2, σ j ) (23)

where M is the number of hidden units, {θ1, . . . , θM } are the output
weights, ψ(.) is the Gaussian function, {c1, . . . , cM } are the centers,
and {σ1, . . . , σM } are the widths of the Gaussian functions. The
structure of the RBF network is shown in Fig. 4.

By defining

ψi, j = ψ(||xi − c j ||2, σ j ) (24)
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TABLE I
RESULT FOR THE NONLINEAR FUNCTION APPROXIMATION

the network output yi becomes

yi =
M∑

j=1

θ jψi, j (25)

which is an undetermined linear system if {ψi, j , yi } is given.
Model structure determination (how to calculate ψi, j from xi )

and parameter optimization (solving θ j ) are the two important
issues in RBF neural network design [28]. For the first issue, the
linear-in-the-parameter approach is often used [29]–[31]. In this
approach, all training samples are used as the candidate RBF centers
as ci = xi , and the Gaussian function widths are set a priori
σ j = σ0. With this setting, the �1-norm SVR can be used to
deal with the second issue by solving the undetermined linear
system (25). A well-known approach for dealing with the second
issue refers to the orthogonal least squares (OLS) [29]. Though many
years have passed, OLS remains to be one of the most efficient
algorithms for solving this problem [30]. In what follows we will
compare it with the �1-norm SVR and SC algorithms. The parameters
of each algorithm were tuned by cross-validation on a small
data set.

A. Noisy Nonlinear Function

We tested the performance of these algorithms with the RBF
network (25) on the problem of nonlinear fitting. We designed the
two nonlinear functions. The first one had a single variable

y1 = sin(x)

x
+ ln(x2 + 1)− e

|x |
10 . (26)

The second one had two variables

y2 = 3(1 − x1)
2e−x2

1 −(x2+1)2 − 10

(
x1

5
− x3

1 − x5
2

)

e−x2
1−x2

2

− 1

3
e−(x1+1)2−x2

2 . (27)

Then, we added Gaussian noises η1 and η2 to them, respectively.
η1 was sampled from a Gaussian distribution with mean 0 and
standard deviation 0.05 and η2 was sampled from a Gaussian distri-
bution with mean 0 and standard deviation 0.2. For the first problem,
1000 samples were generated where x was drawn from a uniformly
distribution in [−15, 15]. We randomly selected 800 samples for
training, and the rest for testing. The Gaussian function widths were
set to σ0 = 10. For the second problem, 49 × 49 samples were
generated in which x1 and x2 were both 49 linearly equally spaced
values from −3 to 3. We randomly selected 1500 points for training
and the rest for testing. The Gaussian function widths were set
to σ0 = 1. The regression results are shown in Table I, where the
mean squared testing error (MSE), the average training time (T ) and
the average number of nonzero elements in the solution N0C over
50 trials are reported. The N0C is the number of active hidden units
in the trained RBF neural networks which directly determines the
predicting time.

In all experiments presented hereafter, the one tailed t-test was used
to assess the statistical significance with p < 0.05 for comparison.
Before the t-test, the Kolmogorov–Smirnov test was used to verify
that all these results are Gaussian distributed with the significant
level 0.05.

For (26), the SC algorithms ran considerably faster than
OLS (Table I). The two NLP algorithms obtained solutions of
similar quality to OLS but ran slightly faster (p < 10−4) which is
in agreement with [22]. Among the SC algorithms, FSS obtained
almost the best testing accuracy (p < 0.06) with acceptable
training time and network size. An HOM obtained smallest model
(p < 10−4) and ADM took least time (p < 4 × 10−3)
but their prediction accuracy were lower (p < 10−4) than
other algorithms. The accuracy of OMP was not significantly
lower than the best FSS (p = 0.06), but its training time was
less than FSS (p < 10−4) and model size was smaller than
FSS (p = 0.02).

The result for (27) in Table I shows that, the four SC algorithms
were tens of times faster for training than the two NLP algorithms and
OLS. Among the SC algorithms, OMP and FSS predicted better than
HOM and ADM (p < 10−4). Compared with FSS, OMP achieved
a similar network size (p = 0.09) in less time (p < 10−4).

In summary, the SC algorithms were usually tens of times faster
than NLP and OLS, although none of them obtained higher prediction
accuracy and smaller N0C than NLP and OLS at the same time.
Among the four SC algorithms, no one outperformed others under
all of the three criteria.

B. Real-World Problems

We tested these algorithms on some real-world problems from
the University of California Irvine (UCI) regression database [32]
with the RBF network regression. Six regression data sets [Abalone,
Boston housing, Auto miles per gallon (MPG), Elevators, Census
(house8L), and Computer Activity] were used. The results are shown
in Table II. The average MSE, training time (T ), and the number
of N0C over 20 trials for each data set were reported. In each trail,
the samples were randomly split for training and testing. The size of
each training and testing data set are shown in Table II. The testing
time for all algorithms were almost the same (hundreds of times less
than their training time), so we did not concern it in comparison.

The observations are summarized as follows.

1) No algorithms had obtained the highest testing accuracy on all
data sets.

2) No algorithms had obtained the smallest N0C on all data sets.
3) The SC algorithms were tens of times faster than NLP0, NLPE,

and OLS for training. In particular, OMP was two orders of
magnitude faster than OLS. Among the SC algorithms, OMP
was the fastest, though this result was not always significant
(significant on Boston housing [p < 0.01], Auto MPG
[p< 10−4], Elevators [p< 10−4], and Census [p < 5×10−3]).
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TABLE II
RESULT ON THE UCI REGRESSION DATA SETS

VI. CONCLUSION

We explored the relationship between the �1-norm SVR and SC,
and compared the NLP algorithms, an efficient �1-norm SVR solver,
with some typical SC algorithms. The contribution of this brief is as
follows. First, we proved that the �1-norm SVR with Gaussian noise
is equivalent to SC. Second, through extensive experiments we found
that many SC algorithms were significantly more efficient than the
NLP algorithm for linear regression. As an application, we formulated
the design of RBF neural network as a linear regression problem.
Experiments on some benchmark data sets demonstrated the higher
efficiency of the SC algorithms compared with the well-known
method, the OLS algorithm. In particular, the OMP algorithm was
two orders of magnitude faster than OLS.

REFERENCES

[1] V. Vapnik and A. Lerner, “Pattern recognition using generalized portrait
method,” Autom. Remote Control, vol. 24, no. 6, pp. 774–780, 1963.

[2] V. Vapnik and A. Chervonenkis, “A note on one class of perceptrons,”
Autom. Remote Control, vol. 25, no. 1, pp. 821–837, 1964.

[3] B. Schölkopf, C. Burges, and V. Vapnik, “Incorporating invariances in
support vector learning machines,” in Proc. Int. Conf. Artif. Neural Netw.,
1996, pp. 47–52.

[4] B. Schölkopf, P. Simard, A. Smola, and V. Vapnik, “Prior knowledge in
support vector kernels,” in Proc. Adv. Neural Inf. Process. Syst., 1998,
pp. 640–646.

[5] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen,
and V. Vapnik, “Predicting time series with support vector machines,”
in Proc. Int. Conf. Artif. Neural Netw., 1997, pp. 999–1004.

[6] M. O. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and
J. Weston, “Support vector regression with ANOVA decomposition
kernels,” in Proc. Adv. Kernel Methods-Support Vector Learn., 1999,
pp. 285–292.

[7] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[8] M. Kojima, S. Mizuno, and A. Yoshise, A Primal-Dual Interior
Point Algorithm for Linear Programming. New York, NY, USA:
Springer-Verlag, 1989.

[9] O. L. Mangasarian, “Exact 1-norm support vector machines via uncon-
strained convex differentiable minimization,” J. Mach. Learn. Res.,
vol. 7, no. 2, pp. 1517–1530, 2006.

[10] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607–609, Jun. 1996.

[11] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. Comput.,
Nov. 1993, pp. 40–44.

[12] S. S. Chen, D. L. Donoho, and A. S. Michael, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[13] M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to
variable selection in least squares problems,” IMA J. Numer. Anal.,
vol. 20, no. 3, pp. 389–403, 2000.

[14] D. M. Malioutov, M. Cetin, and A. S. Willsky, “Homotopy continuation
for sparse signal representation,” in Proc. Int. Conf. Acoust., Speech,
Signal Process., vol. 5. Mar. 2005, pp. 733–736.

[15] D. L. Donoho, “For most large underdetermined systems of linear
equations the minimal �1-norm solution is also the sparsest solution,”
Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797–829, Jun. 2006.

[16] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Proc. Adv. Neural Inf. Process. Syst., vol. 19. 2007,
p. 801.

[17] A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Fast �1-minimization
algorithms and an application in robust face recognition: A review,” in
Proc. Int. Conf. Image Process., Sep. 2010, pp. 1849–1852.

[18] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching
using sparse coding for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1794–1801.

[19] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004.

[20] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational
invariance,” in Proc. 21st Int. Conf. Mach. Learn., 2004, p. 78.

[21] G. M. Fung and O. L. Mangasarian, “A feature selection Newton method
for support vector machine classification,” Comput. Optim. Appl., vol. 28,
no. 2, pp. 185–202, 2004.

[22] M. Han and J. Yin, “The hidden neurons selection of the wavelet
networks using support vector machines and ridge regression,”
Neurocomputing, vol. 72, nos. 1–3, pp. 471–479, Dec. 2008.

[23] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dic-
tionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
Dec. 1993.

[24] J. Yang and Y. Zhang, “Alternating direction algorithms for �1-problems
in compressive sensing,” SIAM J. Sci. Comput., vol. 33, no. 1,
pp. 250–278, 2011.

[25] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[26] S. Perkins and J. Theiler, “Online feature selection using grafting,” in
Proc. 20th Int. Conf. Mach. Learn., vol. 20. 2003, pp. 592–599.

[27] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
Jun. 1991.

[28] M. D. Buhmann, Radial Basis Functions: Theory and Implementations.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[29] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least
squares learning algorithm for radial basis function networks,”
IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.

[30] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin,
“Model selection approaches for non-linear system identification:
A review,” Int. J. Syst. Sci., vol. 39, no. 10, pp. 925–946, Jul. 2008.

[31] J.-X. Peng, K. Li, and D.-S. Huang, “A hybrid forward algorithm for
RBF neural network construction,” IEEE Trans. Neural Netw., vol. 17,
no. 6, pp. 1439–1451, Nov. 2006.

[32] K. Bache and M. Lichman. (2013). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


