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A Fast High-Fidelity Source-Filter Vocoder With
Lightweight Neural Modules

Runxuan Yang , Yuyang Peng , and Xiaolin Hu , Senior Member, IEEE

Abstract—The quality of raw audio waveform generated by a
vocoder could affect various audio generative tasks. In recent years,
the dominance of source-filter vocoders was greatly challenged by
neural vocoders as the latter presents far superior synthesized au-
dio quality. Meanwhile, neural vocoders introduced unprecedented
limitations including low runtime efficiency as well as unstable
pitch especially in those without explicit periodic excitation input,
while these have never been a problem in source-filter vocoders. We
present in this article a novel approach that takes the best from both
parties. We start by an in-depth examination of every building block
in WORLD – one of the best-performing source-filter vocoders
based on plain signal processing algorithms, looking for ones that
do not work well, and we replace them with small, lightweight
and task-specific neural network models. We also rearranged the
vocoding pipeline for a smoother collaboration between building
blocks. Our objective and subjective evaluations demonstrate that
our methods present competitive synthesized audio quality even
when compared against neural vocoders at a much lower compu-
tational cost, while keeping spectral envelope acoustic feature, high
pitch accuracy as in conventional source-filter vocoders.

Index Terms—Neural network, singing voice synthesis, spectral
envelope, vocoder.

I. INTRODUCTION

VOCODER is an important building block of many audio-
related generative tasks including singing voice synthesis

(SVS), text-to-speech (TTS), voice conversion, etc. Taking an
SVS or TTS pipeline for example – training an end-to-end map-
ping from phoneme to audio waveform directly is known to be
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extremely computationally inefficient as shown in WaveNet [1].
Modern SVS and TTS pipelines often split their generation
process into two parts: acoustic model and vocoder, each having
its own significance. An acoustic model is in charge of under-
standing symbolic features extracted from human-readable text
and conversion of these features to a time-continuous acoustic
representation. A vocoder is directly responsible for the final
output audio quality – it not only needs to synthesize audio
waveform based on acoustic features, but also needs to be able
to extract acoustic features from ground-truth audio recordings
for training the acoustic model. Acoustic features act as a bridge
connecting these two modules, capturing high-level acoustic
information (usually in spectral domain) from plain waveforms,
while eliminating as much redundant information as possible.
The designed acoustic features should be clear and concise while
preserving the integrity of acoustic information.

A vocoder may find its application into other tasks as well.
Some of the well-known ones include pitch transposition and
time scaling. These tasks often require manual modifications
over extracted acoustic features, unlike previously mentioned
generative pipelines where acoustic features are kept untouched
and used as ground-truth data for training the preceding acoustic
model.

All these tasks suggest that a complete vocoder needs to have
two distinct functionalities – extraction of acoustic features from
an audio waveform, named analysis stage, and generation of
audio waveform from acoustic features, named synthesis stage.
There are nowadays two main technical approaches for vocoder
development – source-filter vocoder and neural vocoder, based
on quite different concepts. Diagram illustrated in Fig. 1 gives
a rough overview of the two pipelines.

Conventional source-filter vocoders such as STRAIGHT [2],
[3] and WORLD [4] make heavy use of digital signal processing
(DSP) knowledge. The overall idea is, during analysis stage, it
first extracts a fundamental frequency curve [5], [6], and then it
splits harmonic and breathiness components apart, generating a
feature representation for each of them. During synthesis stage, it
performs spectral filtering over two excitation sources separately
for harmonic and breathiness, and then the two parts are added
together for the final output. This means that much of the compli-
cation is done at analysis stage, making synthesis stage fast and
lightweight. Moreover, periodic excitation source is generated
using an oscillator that works in strict accordance with the
fundamental frequency curve. This ensures pitch accuracy while
still allowing easy pitch manipulation such as transposition. On
the other hand, the downside of existing source-filter approaches
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Fig. 1. Diagram for analysis and synthesis pipeline for source-filter vocoder
and neural vocoder.

is inherently obvious – recovery of lost phase information is far
from perfect, causing flaws in synthesized audio quality.

Neural vocoder arises along with the era of deep learning,
challenging source-filter vocoders through a very different tech-
nical path. The analysis stage is relatively straightforward as it
is simply log power spectrogram under Mel frequency scale,
commonly used in many existing neural vocoders [1], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]. The essence lies in the synthesis part – a full neural
network that directly outputs audio waveform based on the input
Mel-spectrogram. As the training for audio synthesis is done in
an end-to-end manner, we no longer need those DSP complica-
tions such as phase recovery in order to achieve an outstanding
synthesized audio quality. However, neural vocoders have some
major drawbacks. One of them is reduced runtime efficiency
especially when running large neural network models. Also,
neural vocoders without explicit periodic excitation as input
often introduce pitch distortions in synthesized audio due to its
data-driven nature, especially when encountering unseen data.
This is especially problematic during singing voice synthesis
where pitch accuracy is an indispensable requirement.

These two approaches are not mutually exclusive. We believe
that, an ideal vocoder should take the best from both parties – one
that can achieve synthesized audio quality as in neural vocoders,
while keeping pitch accuracy and runtime performance as in a
typical source-filter vocoder. Pitch accuracy is especially im-
portant when processing singing voice. There have been several
recent efforts [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32] that incorporates one idea into another, producing
impressive outcomes.

In our work, we perform an in-depth analysis over several
important modules of WORLD – an existing state-of-the-art
plain-DSP vocoder, keeping those that worked well, and replac-
ing others with mostly lightweight, task-specific, deep learning-
based approaches. We name our vocoder system “VogenVoc”, as
part of a larger SVS ecosystem codenamed Vogen. Our system
features a neural network model for smart separation between
periodic and aperiodic components instead of the conventional
method based on orthogonal phase decomposition, a neural

network model for fast and realistic aperiodic excitation gen-
eration instead of using plain white noise signal, as well as
many other minor adjustments to the overall vocoding pipeline
so as to combine source-filter and neural approaches, keeping
advantages from both parties. All these modules contribute to
reaching our goal as a whole.

Subjective and objective evaluations showed the effectiveness
of our method in several aspects:
� Fast runtime speed comparable to a plain-DSP vocoder;
� Competitive synthesized audio fidelity when compared to

neural vocoders;
� High pitch accuracy suitable for synthesizing singing

voices as from a typical source-filter pipeline.

II. RELATED WORK

A. Plain-DSP Approaches

Attempts at obtaining isolated representation of pitch and
pitch-independent spectral features date back to early ages of
vocoder research [33]. Various spectral envelope estimation
algorithms have been proposed throughout the years, including
Cepstrum-based ones [34], [35] and Linear Predictive Coding
(LPC)-based ones [36], [37]. With the advancement of hardware
resources, more sophisticated vocoders such as STRAIGHT [2],
[3] and WORLD [4] have emerged, featuring different ways to
handle harmonic and breathiness components. Modern plain-
DSP vocoders typically extract the following three types of
feature from an audio recording, as illustrated in Fig. 1:
� Fundamental frequency F0 representing the pitch curve of

audio recording, or 0 if unpitched;
� Periodic spectral envelope for the harmonic component of

audio recording independent of F0;
� Aperiodic spectral envelope for the breathiness component

of audio recording.
Periodic and aperiodic envelopes often exhibit many similar-

ities in envelope shape as they represent different acoustic parts
of the same pronunciation and timbre. Thus, some works [38],
[39] choose to use an envelope at full spectral resolution to
represent the sum of both components, and another envelope
at lower resolution for their ratio, instead of having two separate
envelopes both at full resolution. Moreover, we can use the idea
of Mel-spectrogram to compress spectral envelopes by reducing
resolution at higher frequencies [40]. During synthesis phase, we
start with a periodic excitation signal generated with an oscillator
according to F0, then filtered it using periodic envelope, and
finally we obtain waveform of the periodic component using
inverse STFT. Aperiodic component works similarly, except
that we use a noise generator instead of an oscillator. The two
components add up to the final output waveform.

B. Neural Vocoders With No Explicit Periodic Excitation

Neural vocoders without explicit periodic excitation mod-
elling typically use Mel-spectrogram as acoustic feature. In
the terminology of deep learning, converting raw waveform to
Mel-spectrogram can be regarded as a form of dimensionality
reduction, while the inverse process is a generative task that
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restores information. Various generative methods have been
explored deeply for spectrogram inversion in previous research.
Early approaches like WaveNet [1], SampleRNN [7] and FFT-
Net [8] relied on autoregressive waveform generation. Other
approaches include WaveRNN [9] based on recurrent neural
network (RNN), WaveGlow [10] based on normalizing flow,
as well as Parallel WaveNet [11] and ClariNet [12] based on
inverse autoregressive flows (IAF) and knowledge distillation
as some of the first attempts to avoid autoregressive generation.
Later, Generative Adversarial Networks (GAN) became popular
and inspired many works such as Parallel WaveGAN [13], Mel-
GAN [14], HiFi-GAN [15], UnivNet [16], iSTFTNet [17], and
so on. Moreover, with the development of denoising diffusion
probabilistic models, works like WaveGrad [18], DiffWave [19],
SpecGrad [20], HPG [21], and others have emerged. Although
these approaches have achieved outstanding audio quality com-
pared to conventional source-filter methods based on plain DSP,
they suffer from reduced runtime efficiency especially when
running large neural network models. Also, due to the fact that
all harmonics are represented as bitmap inside Mel-spectrogram,
the neural network would need to infer the correct fundamental
frequency for oscillation from pixel combinations, meaning a
slight change in pixel brightness would largely affect pitch
accuracy of the output waveform.

C. Hybrid Approaches

To address the pitch accuracy and runtime efficiency issues
in previously mentioned neural vocoders, researchers have ex-
plored hybrid approaches that combine the advantages of both
methods. QP-Net [22] and QP-PWG [23] introduced pitch-
dependent dilated convolution in accordance with the input F0

curve. LPCNet [24], GELP [25] and GlotGAN [26] investigated
various neural methods on periodic and aperiodic (noise) excita-
tion generation. Neural Homomorphic Vocoder (NHV) [27] pro-
posed trainable linear time-varying filters with adversarial loss.
Neural Source-filter (NSF) and its variants [28], [29], [30] exam-
ined a variety of excitation signals with neural filtering. Unified
Source-filter GAN (uSFGAN) [31] proposed separate networks
for excitation generation and resonance filtering. Source-filter
HiFi-GAN (SiFi-GAN) [32] presented a modified HiFi-GAN
network that takes in an excitation source as an extra input.
Moreover, DDSP [41] proposed a fully end-to-end differentiable
source-filter model for deep learning methods.

Though many existing studies have focused on improving
the synthesis part of a vocoder, the analysis part has received
less attention. Our proposed methods achieve an improvement
through efforts on both parts.

III. METHOD

In this section, we will first go through the synthesis pipeline
in detail, with explanation on our choice of the three acoustic
features, and the way how they interact with the overall vocoding
pipeline. We will also build a small, GAN-based neural network
for aperiodic excitation generation, substituting the conventional
white noise signal.

After that, we will go through the analysis pipeline, namely the
method for extracting these acoustic features from input audio.
We will start by introducing some of the existing limitations we
found in WORLD vocoder [4], as well as our proposed methods
for tackling them. We will also build a neural network specif-
ically for the task of decomposing harmonic and breathiness
components from an input audio.

A. Overall Synthesis Pipeline

In source-filter vocoder, an audio recording waveform x is
considered a sum of its harmonic component xh and breathiness
component xn, each representing the part of x dependent of
F0 and the part independent of it, respectively. The periodic
component is obtained by filtering on periodic excitation signal
βh using periodic spectral envelope ph (aperiodic component
works analogously with βn and pn):

x = xh + xn

= conv1d(ph, βh) + conv1d(pn, βn). (1)

Because convolutional operations are often computationally
expensive, signal filtering is commonly carried out in spectral
domain using elementwise multiplication (denoted with �):

x = F−1{X} = F−1{Xh +Xn}
= F−1{Ph �Bh + Pn �Bn}. (2)

Periodic excitation Bh is constructed according to F0 with an
oscillator. F0, Ph, Pn constitute the acoustic features required
by a source-filter vocoder.

An example of our synthesis pipeline is shown in Fig. 2. The
same concept is used throughout many source-filter approaches,
though many details are different. Specifically, our pipeline is
different from WORLD in the following aspects:
� For the aperiodic part – WORLD uses white noise for ape-

riodic excitation signal βn. However, we found that white
noise exhibits different phase characteristics than human
breathiness in singing. We propose to use a generative
adversarial network (GAN) to construct this part of the
signal. Method details will be described in Section III-B.

� For the periodic part – WORLD calculates every single
impulse response separately when synthesizing periodic
component xh, involving more calculation steps such as
cepstral filtering and sub-sample time-shift than directly
performing spectral domain multiplication over periodic
excitation as xh = F−1{Ph �Bh}. We choose the latter
for a slight performance boost.

B. Synthesis of Aperiodic Excitation

Existing DSP approaches for generating breathiness typically
employs white noise signal as aperiodic excitation. However, the
phase distribution of white noise is very different from that of real
human aspiration, causing breathiness generated with the former
to always provide a fake, “plastic” kind of hearing experience.
Phase variations are notoriously nasty to handle manually. To
the best of our knowledge, no existing work is able to reproduce
perfect human breathiness with plain-DSP method.
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Fig. 2. Source-filter synthesis pipeline used in this work with examples. Images in red-orange are complex-valued, though this figure only displays magnitude
spectrograms. Images in blue-gray are real-valued.

Fig. 3. Neural network architecture for noise (aperiodic excitation) generator
model.

On the other hand, neural vocoders perform a much bet-
ter job at reconstructing human breathiness than DSP ones.
Moreover, an end-to-end neural vocoder does much more than
just breathiness reconstruction including harmonic oscillation,
spectral envelope filtering, etc. – many of which could have
been done manually using DSP methods. We can then construct
a much simplified version of neural vocoder that focuses on
breathiness reconstruction only, keeping the entire generation
pipeline fast and lightweight.

Our aperiodic excitation generator model is designed to be
small, fast and lightweight. It takes three inputs – generated har-
monic component spectrogram X̂h, aperiodic spectral envelope
Pn and Gaussian normal noise with the same size as the other
inputs. A diagram of the model architecture is shown in Fig. 3.
Note that 2-dimensional convolution is often computationally
expensive as it involves 3-D matrix multiplication. To address
this problem, we split our 2-D convolution in each iteration
block into three different convolutional operations, each tackling
only one dimension at a time, namely depthwise separable
convolutions [42]. We also appended an inverse STFT operation
immediately followed by a forward STFT operation to the end

of each iteration block, in order to help spectral convergence as
inspired by the Griffin-Lim algorithm [43]. Finally, the model
outputs aperiodic excitation B̂n, for the use of upcoming steps
in the whole synthesis pipeline.

We base our training settings on UnivNet [16], one of the
best-performing GAN-based neural vocoders. We replace its
generator with our own breathiness generation model, leaving
everything else as-is. Note that we do not calculate loss on B̂n

directly; instead, we do it on X̂n = B̂n � Pn, namely after we
perform spectral filtering with envelopePn, as the original losses
in UnivNet are designed to work on fully-synthesized audio.

C. Overall Analysis Pipeline

The analysis pipeline aims to extract acoustic features from
a piece of given audio recording x. In WORLD, we first need
to extract fundamental frequency curve F0 from input audio
x using Harvest [6] or DIO [5]. We then estimate spectral
envelope Px with CheapTrick [38], and the power ratio between
periodic and aperiodic components α with D4C [39]. We can
also obtain periodic envelope Ph = α2Px and aperiodic enve-
lope Pn = (1− α2)Px separately. A diagram of the described
pipeline is shown in the upper part of Fig. 4.

While WORLD already provides an excellent source-filter
vocoding solution incorporating deep theoretical foundations
and many practical considerations, we still observe some issues
from its pipeline:
� D4C’s use of group delay is not a sufficient condition for

separation between periodic and aperiodic components.
This is because with breathiness having much more phase
randomness than harmonic, we simply cannot guarantee
its first angular derivative is perfectly orthogonal to that
of harmonics, causing overestimation of harmonic compo-
nent in the output aperiodicity ratio. This is also reflected
in enhanced harmonic overtones in high-frequency parts
of synthesized audio, as shown in bottom-left of Fig. 9.

� The consequence of D4C overestimating harmonic com-
ponents could be more pronounced at V/UV boundaries,
especially when next to a sibilant consonant for example,
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Fig. 4. Source-filter analysis pipeline used in WORLD [4] (upper) and in our work (lower) with examples.

where dense full-band sibilant airflow may become strident
pulse train once resynthesized as harmonic components.
In order to avoid this issue, D4C embeds another algo-
rithm called LoveTrain that performs an additional stricter
V/UV classification over the input audio. Unfortunately,
V/UV boundaries are not perfectly time-aligned across all
frequencies – voiced frames are often temporally more
extended in low frequency than in high frequency. If ever a
frame with low-frequency harmonics is wrongly classified
as unvoiced, its envelope will be resynthesized as loud
low-frequency noise, as shown in bottom-right of Fig. 9.

� The pitch-synchronized analysis method used in Cheap-
Trick sets FFT window size to 3Fs/F0, with a fallback
value F0 = 500 for unvoiced frames, equivalent to a hard-
coded 6-millisecond window size. This leads to quite some
loss in estimated spectral envelope resolution.

� Another example of low resolution issue also exists in D4C.
D4C sets band aperiodicity to be −60 dB at 0 Hz and 0 dB
at Fs/2 Hz, and calculates band aperiodicity once only
every 3000 Hz, greatly diminishing the distinction between
periodic and aperiodic components.

Among these issues, much of the trouble comes from the
separation task between harmonic and breathiness. Even though
its theoretical foundations may look simple, we are still faced
with lots of case-specific fine-tuning adaptation that would be
labor-intensive to complete manually. Instead, we decide to
train a lightweight and efficient neural network model for this
separation task, and we can then estimate periodic envelope
Ph and aperiodic envelope Pn separately. A flow chart of the
modified envelope estimation pipeline is shown in the lower part
of Fig. 4. Comparing to that of WORLD, the most different part

is that envelope estimation now depends on separation results,
and the estimation methods for the two components are different.
Specifically:
� Harmonic/breathiness separation model is a neural net-

work trained to directly output Xh and Xn given complex
spectrogram X . More details are given in Section III-D.

� We use CheapTrick to calculate for periodic envelope Ph

from Xh, though we only keep results from voiced frames.
Due to scatters of small harmonic overtone fragments in
separation results, we need to smooth out periodic envelope
Ph according its proportion in full envelopePx using DCT:

Ph = Px/ exp

(
DCTSmoothensh

(
log

Px

P ′
h

))
, (3)

Px = CheapTrick(x, Fs), (4)

P ′
h = CheapTrick(xh, Fs), (5)

DCTSmoothens(X) = DCT4{DCT1{X}|1...s}. (6)

Here, the constant sh stands for the number of dimensions
to keep after DCT. A smaller sh gives a smoother output
envelope. We use sh = �Fs/3000�.

� As for the part of estimating aperiodic envelope Pn from
Xn, we simply smooth away random perturbations from
the spectrogram using DCT:

Ph = exp(DCTSmoothensn(log ‖Xn‖)) . (7)

Again, the constant sn stands for the number of dimensions
to keep after DCT. We use sn = �Fs/(2F0)� so that sn is no
larger than the number of harmonic peaks in each spectral
frame. For the case of unvoiced frames, any arbitrary sn

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2023 at 01:05:33 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: FAST HIGH-FIDELITY SOURCE-FILTER VOCODER WITH LIGHTWEIGHT NEURAL MODULES 3367

Fig. 5. Corpus preparation procedure for harmonics/breathiness separation model.

with reasonable equivalent F0 would work. We use sn =
�Fs/350� in our experiments.

D. Harmonic/Breathiness Separation

Our task is to build a neural network model that, when given
input complex spectrogram X , outputs complex spectrograms
Xh and Xn representing harmonic and breathiness components
respectively, and satisfying Xh +Xn = X . Existing approach
uses orthogonal decomposition of ∂

∂τ argX into ∂
∂τ argBh,

namely calculating vector projection of angular derivative of
X over time onto that of periodic excitation Bh. One may also
use angular derivative over frequency ω as in D4C instead of
time and obtain similar results. Formally:

X ′
h = X − ‖X‖

‖Bh‖Bh cos

(
∂

∂τ
argX − ∂

∂τ
argBh

)
, (8)

X ′
n = X −X ′

h. (9)

The intuition behind this is that, with Bh consisting of pure
sinusoidal waves, its first angular derivative over time is always
∂ϕ
∂τ = 2πnF0 for n ∈ N, meaning whenever ∂

∂τ argX is differ-
ent than 2πnF0, there is noise – at least the part of X that is
orthogonal to it. We can then isolate a large part of Xn from X
following (9). On the other hand, this also means that parts ofXn

is still left in X ′
h, as breathiness contains so much randomness

that is almost never perfectly orthogonal to Bh.
Even though we cannot directly use separation results from

orthogonal decomposition outputs X ′
h and X ′

n, we can still use
them as a starting point for training a neural network by building
a training set upon them:
� We attenuate leftover breathiness between harmonics inX ′

h

by multiplying it with ‖Bh‖. Further remaining breathiness
at V/UV boundaries (especially when next to fricative and
affricate consonants) are erased manually using any tool
capable of editing spectrogram. We adopt a conservative
approach and eliminate any spectral components that are
doubtful. This results in a refinedXh serving as the ground-
truth for training.

Fig. 6. Neural network architecture for harmonics/breathiness separation
model. Blocks indicates with “×6” are repeated for six times.

� We use DCT-based smoothing as in (6) to smoothen ‖X ′
n‖

a little bit, keepingarg(X ′
n) intact. Leftover harmonic frag-

ments at V/UV boundaries are erased manually, following
a similar procedure as above. This results in a refined Xn

serving as the ground-truth for training.
� We use the sum of edited Xh and Xn as input to the neural

network instead of the original X .
An example of the described corpus-building procedure is

shown in Fig. 5. This training set does not need to be large. We
used only a total of 10 minutes to obtain decent results.

The neural network architecture is designed simple on
purpose, consisting of mostly repeated combinations of 2D-
convolution and ReLU [44], as we only need to focus on local
spectral features for separation. A full diagram of neural network
architecture is shown in Fig. 6. We do not need to input Bh

along with X as in orthogonal decomposition though, as we
can already find good enough hints of phase change through
time from the frequency scale ω. Specifically, we input, along
with X , angular derivative over time as unit complex values for
every frequencyω according to the time-shift property of Fourier
transform:

F{x(t− dτ)}(ω) = e−2πiωdτF{x(t)}(ω), (10)

F{δ(t− dτ)}(ω) = e−2πiωdτ1. (11)

Here, δ(·) stands for the Dirac delta function. In practice, we set
dτ to be the time interval between STFT frames. We trained our
model using Adam optimizer and complex MAE loss for both
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TABLE I
HYPER-PARAMETER SETTINGS FOR NEURAL VOCODERS IN COMPARISON

Xh and Xn:

L1(X, X̂) = ‖X − X̂‖. (12)

IV. EXPERIMENTS

To show the effectiveness of our proposed methods, we
included WORLD [4], an existing state-of-the-art plain-DSP
vocoder, as well as several neural vocoders – SiFi-GAN [32],
HiFi-GAN [15] and UnivNet [16] into our comparison. In all
evaluation settings, we used a sampling rate of 44.1 kHz and
FFT size 2048. The training corpus used is OpenSinger [45], an
open-source singing voice dataset featuring 50 hours of vocal
recording from 66 different singers, all singing in Chinese.
While our method could be used on both speech and singing
voice, we chose to train and evaluate solely on singing voice
corpus because singing voice imposes higher requirements on
audio quality (usually recorded on a professional condenser
microphone) and features much larger vocal ranging from below
100 Hz to above 900 Hz.

SiFi-GAN as well as the synthesis part of our method were
trained on a single instance of NVIDIA GeForce RTX 2080 Ti.
HiFi-GAN and UnivNet were trained on 6 instances of NVIDIA
GeForce RTX 2080 Ti. Note that neural vocoders typically only
support 22.05 kHz officially. We thus made several adjustments
to hyper-parameters so that they would work for our purpose.
Moreover, all source-filter vocoders use frame shift 441 (10 ms)
while neural vocoders have different frame shift values as part
of their neural architecture design. Detailed hyper-parameter
settings are shown in Table I.

We performed our evaluation procedure through three aspects:
� Audio fidelity is evaluated subjectively based on the

MUSHRA scheme (MUltiple Stimuli with Hidden Ref-
erence and Anchor) [46].

� Pitch accuracy is evaluated objectively by calculating the
difference between extracted F0 curves of synthesized
audio and that of original audio using a variety of F0-
extraction algorithms [5], [6], [47], [48].

� Runtime performance is evaluated objectively by compar-
ing synthesis time cost between vocoders.

We provide sample audio files at https://aqtq314.
github.io/VogenSVS/VocoderV01/. Source code and
pretrained models are available at https://github.com/
aqtq314/VogenSVS.

Fig. 7. Graphical user interface used for MUSHRA listening test.

A. Audio Fidelity

We set up a subjective evaluation procedure1 according to
the MUSHRA (MUltiple Stimuli with Hidden Reference and
Anchor) specification [46]. MUSHRA is a subjective evaluation
scheme designed specifically for audio compression algorithm.
It features a reference input audio and several resynthesized
ones, asking evaluators to grade each of them on a integer
scale between 0 and 100. This allows us to see finer differences
between pairs of items rather than a more general purpose
scheme such as MOS score. It also allows us to evaluate over
fidelity to the original audio instead of plain audio quality. The
graphical user interface used for grading is shown in Fig. 7.

The evaluation procedure contained 20 different sets of dry
vocal excerpts of 6 to 10 seconds from 20 different experienced
Chinese pop singers (9 males and 11 females). All singers are
unseen from training corpus. Two of them have an F0 higher
than the vocal range seen in training set (referred-to as unseen
vocal range). Each set contained an original sound recording for
reference, and several ones for grading, all in shuffled order:
� The original sound unmodified (as hidden reference);
� The original sound downsampled to 8 kHz – equivalent to

applying a low-pass filter of 4 kHz (as hidden low-anchor);
� Copy-synthesis from WORLD;
� Copy-synthesis from proposed methods;
� Copy-synthesis from SiFi-GAN;
� Copy-synthesis from HiFi-GAN;
� Copy-synthesis from UnivNet.
The term “copy-synthesis” refers to synthesizing waveform

directly from analyzed acoustic features. The purpose of hav-
ing hidden reference and low-anchor is that, as specified in
the MUSHRA specification, to ensure validity of collected
responses by checking whether assessors are able to correctly
identify items with no modification or those with highly perceiv-
able defects through pure listening. We expect each assessor to
score the hidden reference above 90 for at least 18 test sets, and
the hidden low-anchor below 90 for all test sets.

We crowdsourced our evaluation results from Internet virtual
singer communities. All evaluators had experience with at least
one commercial SVS application and were aged between 18
to 30 years old. We collected from our evaluators 10 valid

1This experiment has been approved by the Department of Psychology Ethics
Committee, Tsinghua University.
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Fig. 8. Statistical visualizations of MUSHRA test results. Vertical axis represents MUSHRA score on audio fidelity to the reference audio. Error bar shows 95%
confidence interval. Seen vocal range means F0 of vocal excerpt does not go beyond vocal range seen in training dataset. Unseen vocal range means otherwise.

Fig. 9. Comparison of resynthesized audio spectrograms between plain-DSP vocoder WORLD and our method, with emphasis on avoiding enhanced harmonic
overtones and noise at V/UV boundaries.

Fig. 10. Comparison of resynthesized audio F0 curves (extracted using DIO+StoneMask) between neural vocoder HiFi-GAN and our method. Horizontal axis
represents time in seconds. Vertical axis represents pitch in MIDI scale.

questionnaire responses, consisting of 200 score samples for
each vocoder in comparison. Evaluation results are illustrated
in Fig. 8. The overall results show that our method achieved
a similar performance comparing to SiFi-GAN while scoring
higher than the other two neural vocoders HiFi-GAN and Uni-
vNet. Comparing with existing plain-DSP vocoder WORLD,
our method could avoid enhanced harmonic overtones that gen-
erate a “metallic”-sounding artifact (bottom-left of Fig. 9), as
well as low-frequency noise at V/UV boundaries (bottom-right
of Fig. 9) with the use of a neural harmonic/breathiness decom-
poser. Moreover, our evaluators particularly pointed out that
the breathiness part sounds more natural in our method after
we replaced white-noise aperiodic excitation with an NN-based
noise generator.

Comparison with neural vocoders is a little bit more com-
plicated, as the results changed quite a bit when we tried to

classify singers in test by their characteristics. While our method
outperformed HiFi-GAN and UnivNet in all cases, it was inferior
to SiFi-GAN for male voices and slightly superior for female
voices. Notably, our method was the most robust at high pitches
exceeding the vocal range seen in training set. Furthermore,
source-filter vocoders have a natural advantage over neural
vocoders without explicit periodic excitation modelling in terms
of pitch fidelity to the inputF0 as well as continuity of harmonics.
Fig. 10 shows an example where F0 curve gets distorted when
resynthesized with neural vocoder HiFi-GAN while staying
mostly intact in our method. This is also evaluated objectively
in more details in Section IV-B.

In the case of male voice, or voice with relatively low F0

in general, our method often generates audio with overly heavy
airflow that makes it sound more breathy than the original audio.
This is because harmonic and breathiness components are not
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Fig. 11. Comparison of raw pitch accuracy (RPA) of synthesized audio between different genders among vocoders, evaluated using various F0 estimation
algorithms. The vertical axis shows the RPA score.

completely independent of each other in practice, unlike how we
treat them in our methods where we separate them in the first step
of analysis, and only combine them back in the last step of syn-
thesis. WORLD partially avoids this with amplified harmonics,
though is also generates artifacts in high-frequency bands. Full
neural vocoders are able to handle this much better with a learned
end-to-end pipeline. To tackle this problem, it will be necessary
to redesign our pipeline so that finer relationship between har-
monic and breathiness components are taken into account.

B. Pitch Accuracy

To further verify pitch accuracy among different vocoders, we
performed an objective evaluation on raw pitch accuracy (RPA)
as used in Music Information Retrieval Evaluation eXchange
(MIREX) [49], defined as the proportion of frames in predicted
F̂0 where the pitch stays within ± 1/2 semitones of the ground-
truth F0:

RPA′
k(f̂ , f) = μ

(∣∣∣∣12 log2
(
f

f̂

)∣∣∣∣− k

)
, (13)

RPAk(F̂0, F0) =

∑
τ V [τ ] RPA′

k(F̂0[τ ], F0[τ ])∑
τ V [τ ]

. (14)

Here, μ stands for the unit step function. The V/UV mask
V is 1 for voiced frames, 0 otherwise. The original definition
in MIREX for tolerance threshold k is 0.5, meaning ± 1/2
semitones. We further added ± 1/4 and ± 1/8 semitones for
a stricter verification in order to better illustrate their difference.

We resynthesized the entire OpenSinger corpus using differ-
ent vocoders in test, and calculated RPA of resynthesized audio
pieces. In addition to plain copy-synthesis with no pitch trans-
position, we also carried out synthesis using pitch ratio at 0.5,√
0.5,

√
2 and 2, meaning the extracted F0 curve is multiplied

with each of those values and resynthesized to waveform audio,
keeping other acoustic features unchanged. This also implies
that vocoders without using explicit F0 curves (e.g. HiFi-GAN
and UnivNet) are ineligible to this method of evaluation, as
pitch transposition directly on Mel-spectrograms is far from a
trivial task. Due to reconstruction errors in F0 estimation, we
performed our test using 2 different F0 estimation algorithms:
DIO + StoneMask and CREPE.

Fig. 11 shows RPA evaluation results without pitch transposi-
tion. WORLD, ours and SiFi-GAN scored much higher than the
other two under allF0 estimation algorithms. This is expected as
the three vocoders use DSP-based oscillators as periodic excita-
tion generator. In addition, Fig. 12 shows RPA evaluation results
for WORLD, ours and SiFi-GAN under pitch-transposed scenar-
ios. While the results do demonstrate slightly growing degreda-
tion in some cases as pitch ratio deviates further from 1, the RPA
scores are still far above HiFi-GAN and UnivNet even though
the latter two have an unfair advantage by doing copy synthesis.

Moreover, our method scored slightly higher than WORLD
as we perform filtering through direct multiplication of spectral
envelope and excitation signal instead of calculating every single
impulse response as implemented in WORLD. In practice, this
marginal improvement over WORLD is barely perceivable to hu-
man. The essential idea is to show that our method have achieved
a far superior RPA than neural vocoders without explicit periodic
excitation as input. In addition, all vocoders scored slightly
higher for female voices than for male voices, though this did
not affect the overall comparison between vocoders.

C. Runtime Performance

To verify runtime speed of proposed methods, we measured
the average time cost for synthesis among vocoders. Measure-
ments were carried out on several hardware settings including
various GPU and CPU. All neural vocoders as well as our method
were implemented in PyTorch. In the case of WORLD, we used
the version implemented in C++, meaning it did not take part
in tests carried out on GPU. All tests were run on a single
CPU thread with the help of benchmarking utilities built-in to
PyTorch.

Results are shown in Fig. 13. In all hardware settings, our
method achieved significant speedup over other neural vocoders,
with or without the help of GPU-based parallelism. Also, our
method ran even slightly faster than WORLD with the help of
PyTorch library optimizations. It is worth noting that, since tests
on WORLD was carried out on a different runtime library than
PyTorch, its results may fluctuate when tested on a different
environment, though unlikely to change drastically. It is still fair
to say that our method has achieved similar runtime efficiency
to that of a conventional source-filter vocoder.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2023 at 01:05:33 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: FAST HIGH-FIDELITY SOURCE-FILTER VOCODER WITH LIGHTWEIGHT NEURAL MODULES 3371

Fig. 12. Comparison of raw pitch accuracy (RPA) of pitch-transposed synthesized audio among vocoders using explicit F0 curve as part of acoustic features,
evaluated for different genders and pitch transposition ratios using various F0 estimation algorithms. The vertical axis shows the RPA score.

Fig. 13. Runtime performance comparison among vocoders under various hardware settings. The numbers are time cost in milliseconds per synthesis of a
1-second audio. All tests were run on a single CPU thread.

V. CONCLUSION

In this article, we present a novel source-filter vocoding
pipeline equipped with small, lightweight and task-specific neu-
ral networks. In particular, we constructed a neural network
model for decomposition into harmonic and breathiness com-
ponents from an input audio, as well as a noise generator neural
network model for aperiodic excitation. Our subjective and
objective evaluation procedures have shown that our method was
able to synthesize audio at a level of fidelity comparable to neural
vocoders, while still keeping high runtime efficiency comparable
to conventional DSP vocoder and high pitch accuracy as from a
typical source-filter vocoder.
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