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Abstract— Convolutional Neural Networks (CNNs) have been
applied to camera relocalization, which is to infer the pose of the
camera given a single monocular image. However, there are still
many open problems for camera relocalization with CNNs. We
delve into the CNNs for camera relocalization. First, a variant of
Euler angles named Euler6 is proposed to represent orientation.
Then a data augmentation method named pose synthesis is
designed to reduce sparsity of poses in the whole pose space
to cope with overfitting in training. Third, a multi-task CNN
named BranchNet is proposed to deal with the complex coupling
of orientation and translation. The network consists of several
shared convolutional layers and splits into two branches which
predict orientation and translation, respectively. Experiments
on the 7Scenes dataset show that incorporating these techniques
one by one into an existing model PoseNet always leads to
better results. Together these techniques reduce the orientation
error by 15.9% and the translation error by 38.3% compared
to the state-of-the-art model Bayesian PoseNet. We implement
BranchNet on an Intel NUC mobile platform and reach a speed
of 43 fps, which meets the real-time requirement of many
robotic applications.

I. INTRODUCTION

The problem of camera relocalization is to infer the orien-
tation and translation of a camera given only a single picture,
which is often encountered in many robotic applications,
such as navigation and Simultaneously Localization and
Mapping (SLAM). In SLAM, if the tracking is lost, global
relocalization is started to initialize camera’s pose estimation.
In the past several decades, many approaches are developed
for solving this problem [1], [2], [3], [4] [5], [6]. Recently,
convolutional neural networks (CNNs) have been used to
perform camera relocalization because of their robustness
to real-life scenarios and scalability to training data size.
A CNN-based relocalization framework named PoseNet is
introduced to regress camera poses [7]. A Bayesian PoseNet
is trained end-to-end with dropout and obtains relocalization
uncertainty by averaging Monte Carlo dropout samples from
posterior distribution of the Bayesian CNN’s weights [8].
The two models have exhibited good performance on both
indoor and outdoor relocalization datasets.

However, there are still many open problems for camera
relocalization with CNNs. First, there are many orientation
representations that can be utilized by CNNs for pose regres-
sion, such as Euler angles, quaternion and rotation matrix.
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Fig. 1. Multi-task CNN for camera relocalization. Given an input image,
the CNN predicts the 6-DOF of the camera. A new orientation representation
Euler6 is employed. Both data and label are augmented by a method named
pose synthesis, which gives different label to different patches extracted
from the input image.

But which representation is most suitable for this problem is
unknown. PoseNet employs quaternion as orientation repre-
sentation but quaternion faces the problem that it represents
the same orientation operation with its additive inverse. So
similar images may be assigned very different quaternions
in pose regression.

Second, due to the high cost for collecting data, camera
poses in training set are always very sparse in the whole
pose space. The camera poses in training set always belong
to several trajectories used to capture key frames. So only a
sparse sampling of the whole pose space is given. Because of
the sparsity of sampled poses, the effective range of camera
relocalization is limited to the nearby regions to the training
trajectories. PoseNet augments data by random cropping to
cope with overfitting but is unable to reduce the sparsity of
pose because it does not change the distribution of poses in
training set.

Third, the relationship between orientation and translation
is complex which entails specific network architecture to
achieve high accuracy. The orientation and translation are
usually treated as a whole and are optimized together with
a single network in PoseNet. Regressing them together may
not be the optimal strategy.

To tackle the problems stated above, we present three
techniques for CNN-based camera relocalization methods.
First, we propose a variant of Euler angles named Euler6 to
represent orientation. Second, we propose a new data aug-
mentation method named pose synthesis to augment data and
label simultaneously, which gives different poses to different
image patches and effectively reduce sparsity of sampled



poses compared to ordinary random cropping. Third, we
present a generic multi-task network named BranchNet to
match the relationship between the orientation and transla-
tion. Experimental results showed that all of these techniques
could improve the performance of PoseNet.

II. RELATED WORK

In this section, we first review camera relocalization
methods and then multi-task CNNs because we will design
a multi-task CNN for camera relocalization.

A. Camera Relocalization Method
There are mainly two kinds of approaches for vision-

based camera relocalization: keypoints-based approaches and
keyframes-based approaches.

The keypoints-based approaches detect interest points in
the image, extract their local features and match them against
a database of features. Local features such as SIFT [9] and
ORB [10] are exploited to register points. A 3D geometric
test is employed to retrieve a set of 2D-3D points and rule
out false matches [1]. SCoRe Forests use random forests to
regress scene coordinate labels to relocalization [2]. A hybrid
discriminative-generative learning architecture uses a set of
multiple predictors to reduce relocalization error [3]. SCoRe
Forests approach is extended with a probabilistic approach
which exploits uncertainty from regression forests for pose
estimation [4].

The keyframes-based approaches get the camera pose by
computing image similarity scores between a query image
and a set of key frames with known key poses. The final
camera pose is computed as a weighted average of the key
poses or set to the pose of the keyframe with the highest
image similarity score [5]. The synthetic RGB-D views are
used as key frames in [6]. However, these methods only
provide a coarse estimation to the camera pose because of
the sparsity of poses in training set.

The past few years have witnessed the success of convolu-
tional neural networks on a wide variety of computer vision
tasks, such as classification, object detection and image
parsing. The hierarchical structure has been shown good at
extracting high level feature representations and robust to
many real-life scenarios. PoseNet [8] leverages high level
feature representations of CNN to regress camera pose. It can
be considered as a keyframes-based approach which encodes
the key frames in training set into the parameters of models.
PoseNet is extended to a Bayesian model trained end-to-
end with dropout [8]. At inference, averaging Monte Carlo
dropout samples from posterior distribution of Bayesian
CNN’s weights significantly improves relocalization accu-
racy. SE3-Net regresses rigid body motion of moving objects
from raw point cloud data and action. However, using point
cloud data limits this algorithm to RGB-D data and the
number of predicted objects must be specified in training
[11].

B. Multi-task CNN
Multi-task learning is a way of utilizing shared information

to solve multiple problems at the same time [12]. Multi-task

CNNs have been applied to many tasks. TCDCN is proposed
to jointly optimize facial landmark detection with a set of
related tasks such as appearance attribute and expression
[13]. HyperFace employs a separate CNN followed by a
multi-task learning algorithm for simultaneously detecting
faces, localizing landmarks, estimating head pose and iden-
tifying gender [14]. An R-CNN detector with multiple loss
functions is trained for the tasks of human pose estimation
and action detection [15]. Attributes and object classes are
learned jointly to improve overall classification performance
[16]. MCNNs take advantage of attribute relationships to
improve accuracy of attribute classifiers [17]. In these net-
work architectures, the lower layers are shared to extract low
level common knowledges and higher layers are separated for
related aims to generate specific predictions.

In fact, these multi-task CNN architectures can be con-
sidered as hierarchical network architectures with only one
splitting node. A general hierarchical network has a tree
structure which has multiple splitting nodes. A vast literature
has explored hierarchical network structures for classification
and achieved significant improvement on accuracy. HD-
CNNs are presented which consists of both coarse compo-
nent trained over all classes and fine components trained
over subsets of classes [18]. Network of experts replaces
expensive training of the base CNN model over all classes
with learning a generalist that discriminates a much smaller
number of specialities [19].

III. METHODS

Our task is to infer a camera’s 6-DOF pose consisting
of orientation R and translation t where R ∈ SO(3) and t ∈
R3. The outputs are two vectors respectively representing
orientation and translation. In this section, we present the
novel orientation representation Euler6, pose synthesis and
the BranchNet to predict camera pose.

A. Orientation Representation

Several orientation representations can be used to describe
the orientation of a rigid body, such as Euler angles, quater-
nion and rotation matrix. Quaternion is employed by PoseNet
[7] because arbitrary 4-D values are easily mapped to legit-
imate rotations by normalizing them to unit length, which
is simpler than the orthonormalization required by rotation
matrix. PoseNet optimizes pose vector with Euclidean Loss
function:

loss(I) = ∥t̂ − t∥2 +β
∥∥∥∥q̂− q

∥q∥

∥∥∥∥
2

(1)

where t̂ is the groundtruth of translation, q is the orientation
in quaternion representation, q̂ is the groundtruth of orienta-
tion and β is a scale factor.

However, a quaternion q represents the same orientation
operation with −q. In practical situations, one element of q is
fixed to be non-negative to avoid this ambiguity. For instance,
without loss of generality we choose the first element to
be non-negative. If a CNN predicts an image’s orientation
as [0,1,0,0] while the groundtruth of the orientation is
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Fig. 2. PoseNet and BranchNet. Top: Architecture of PoseNet in which orientation and translation vectors are predicted by the same fully connected
layer. Bottom: Architecture of BranchNet. The orientation and translation vectors are predicted by different branches. The “Icp” means “Inception” module
of GoogLeNet.

[0,−1,0,0], the orientation term in the loss function (1)
reaches its maximum but in fact the prediction of the CNN
is correct.

The Euler angles are three angles to describe the orienta-
tion of a rigid body. They represent a sequence of rotations
about the axes of a coordinate system. For instance, a first
rotation ϕ about z axis, a second rotation θ about x axis, and
a third rotation ψ about y axis. Original Euler angles face
a similar problem with quaternion: the periodicity leads to
quite different angle values for similar images. To avoid this
problem, we employ a variant of Euler angles named Euler6
to represent orientation.

The Euler6 is a 6D vector:

e = [sinϕ ,cosϕ ,sinθ ,cosθ ,sinψ,cosψ] (2)

A Euclidean loss function is defined to optimize orientation
and translation:

loss(I) = ∥t − t̂∥2 +β∥e− ê∥2 (3)

where t̂ is the translation groundtruth, ê is the orientation
groundtruth and β is a scale factor to balance the penalties of
the orientation and translation. The loss function (3) reaches
its minimum when the prediction of CNN is completely
accurate.

B. Pose Synthesis

A common problem for camera relocalization is that the
camera poses in training set are always very sparse in the
whole pose space. Fig. 3a shows the training and testing
trajectories on the Heads scene from 7Scenes dataset [2],
which are clearly non overlaying. The camera poses in the
training set belong to a limited number of trajectories. We
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Fig. 3. Distribution of Euler angles on the Heads scene from 7Scenes
dataset. Left: distribution before pose synthesis. Right: distribution after
pose synthesis.

are only given a sparse sampling of the whole pose space.
Relocalization error becomes large when the pose of the
query image differs significantly from the closest pose in the
training set. So overfitting is a serious problem in training
of supervised learning methods for accomplishing this task.

PoseNet utilizes random cropping to cope with overfitting.
Random cropping is a common method of data augmenta-
tion. With random cropping, PoseNet learns to associate a
broader range of spatial activation statistics with a certain
class label which improves its robustness. However, this
method is unable to change the distribution of poses in
training set and reduce the sparsity of poses.

We propose a variant of random cropping named pose syn-
thesis to augment data which can significantly reduce sparsity
of training pose and alleviate overfitting. Translations of
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Fig. 4. Pose synthesis. OXYZ and OX’Y’Z’ are coordinate systems of
original camera c and rotated camera c′. Patch A and patch C are central
patches of images captured by c and c′. Patch B has tiny difference with C
so that the new pose OX’Y’Z’ can be synthesized.

patches in the image plane can be interpreted as rotations of
the camera about X axis and Y axis as illustrated in Fig. 4.
Rotating the camera along X axis and then along Y axis, we
synthesize a new pose. And the central patch C of the image
with synthesized pose is similar to patch B in the original
image. By ignoring tiny difference between patches B and
C, we can assume that patches with different translations in
the image plane is the central patch of another image with a
new pose. In this way, we extend the limited training dataset
by extracting patches and synthesizing new poses. Fig. 3b
shows the distribution of synthesized orientation, which is
much more uniform than the original distribution.

The effect of dataset expansion can improve relocalization
performance while the label error generated by approximat-
ing the pose of C as the pose of B will degrade relocalization
performance. These two factors are both proportional to the
distance r between centers of the extracted patch and the
original image. The farther away patch B in Fig. 4 is to
patch A, the greater label error is. When (x,y) in equation 4
is (0,0), patch B and synthesized patch C are just the same
with patch A so that there is no label error between patch B
and patch C. When patch B is sampled at a corner of original
image, then the difference between B and C in appearance
reaches maximum. At the same time, the farther sampled
patches are away to the center of the original image, the
more various synthesized poses are, which would alleviate
overfitting more in training CNNs.

An ideal pose synthesis approach is to synthesize each
of the 6 DOFs for a cropped patch. However, translation
of patch can not be synthesized because we assume the
depth information is unavailable in this study. Three ori-
entation angles can be synthesized according to geometry
information, but only θ and ψ are synthesized in this study

as described above because we found that synthesis of ϕ
resulted in little improvement but great data preprocessing
overhead with patch rotation in the image plane.

The Euler angles ϕ̂ , θ̂ , ψ̂ to convert camera from OXYZ
system to OX’Y’Z’ system in Fig. 4 are:

ϕ̂ = 0 (4)

θ̂ = −∆x
W

·Vh (5)

ψ̂ =
∆y
H

·Vv (6)

where Vh is the horizontal angle of view, Vv is the vertical
angle of view, W is the width of image and H is the height
of image. The synthesized pose is the combination of the
original pose and [ϕ̂ , θ̂ , ψ̂].

C. Mutli-task CNN for Camera Relocalization
The relationship between orientation and translation is

complex. To quantitatively understand relationship between
orientation and translation, we calculated the correlations
between the 6 DOFs. We first arranged 6 DOF pose vector
([X ,Y,Z,ϕ ,θ ,ψ]) of all images in a scene as a 6×N matrix
(N is the number of images in this scene), then computed the
correlations between the columns which resulted in a 6×6
correlation matrix. Fig. 5 visualizes the correlation matrices
of seven scenes and their average. The 3× 3 matrix in the
upper left of correlation matrix M is the correlation matrix
of translation and the 3 × 3 matrix in the lower right of
correlation matrix M is the correlation of Euler angles. On
average, intra group correlations (0.391 for orientation and
0.293 for translation, self-correlations are not involved) are
greater than inter group correlations (0.256).

In the extreme case, regressing orientation and translation
separately by two individual networks may also give better
results. This was verified in experiments (see section IV-
E). But regressing orientation and translation individually
significantly increases the computing cost. To achieve the
trade-off between computing and relocalization performance,
we branch the network to reduce the disturbance between
regression of orientation and translation, as illustrated in Fig.
2.

Our baseline PoseNet-Euler6 has the same architecture
with PoseNet [7] except that the orientation representation is
Euler6 as illustrated in Fig. 2a. The “Icp” means “Inception”
module of GoogLeNet. The chunk of BranchNet-Euler6
splits into two branches which are respectively used to
predict orientation and translation at “Icp6”. As shown in Fig.
2b, BranchNet-Euler6 comprises two parts, namely shared
layers and specific layers. The shared layers on the left side
of Fig. 2b process pictures and extract low-level features
shared by orientation branch and translation branch. The
specific layers on the right side of Fig. 2b respectively predict
orientation and translation.

In order to keep the number of parameters of BranchNet-
Euler6 to be approximately equal to that of PoseNet-Euler6,
we decrease the channels of specific layers. The detailed
settings for PoseNet-Euler6 and BranchNet-Euler6 are de-
scribed in Table I.



TABLE I
INCARNATION OF THE POSENET-EULER6 AND BRANCHNET-EULER6 ARCHITECTURE.

Type PoseNet-Euler6 / BranchNet-Euler6
# channel # 1x1 # 3x3 reduce # 3x3 # 5x5 reduce # 5x5 pool proj params / k

Conv1 64 / 64 9.25 / 9.25
max pool 64 / 64

Conv2 192 / 192 64 / 64 192 / 192 112.25 / 112.25
max pool 192 / 192

Icp1 256 / 256 64 / 64 96 / 96 128 / 128 16 / 16 32 / 32 32 / 32 159.86 / 159.86
Icp2 256 / 256 128 / 128 128 / 128 192 / 192 32 / 32 96 / 96 64 / 64 379.63 / 379.63

max pool 480 / 480
Icp3 512 / 512 192 / 192 96 / 96 208 / 208 16 / 16 48 / 48 64 / 64 367.36 / 367.36
Icp4 512 / 512 160 / 160 112 / 112 224 / 224 24 / 24 64 / 64 64 / 64 438.63 / 438.63
Icp5 512 / 512 128 / 128 128 / 128 256 / 256 24 / 24 64 / 64 64 / 64 498.15 /498.15
Icp6 528 / 528 112 / 112 144 / 144 288 / 288 32 / 32 64 / 64 64 / 64 591.19 / 591.19
Icp7 832 / 582 256 / 180 160 / 112 320 / 224 32 / 22 128 / 90 128 / 90 848 / 955.71

max pool 832 / 582
Icp8 832 / 582 256 / 180 160 / 112 320 / 224 32 / 22 128 / 90 128 / 90 1019 / 998.32
Icp9 1024 / 716 384/ 269 192 / 135 384 / 269 48 / 34 128 / 90 128 / 90 1410.23 / 1389.68

avg pool 1024 / 1024
fc 2048 / 1024 2048 / 2048

(a) Chess (b) Fire (c) Heads (d) Office

(e) Pumpkin (f) RedKitchen (g) Stairs (h) Average

Fig. 5. Visualizations of 6-DOF pose vector’s correlation matrices. The
brightness is proportional to correlation value. The diagonal of correlation
matrices is set to 0.

IV. EXPERIMENTS

The proposed methods were evaluated on an indoor relo-
calization dataset 7Scenes [2]. All experiments were based
on Caffe [20].

A. Dataset

The 7Scenes dataset is an indoor RGB-D relocalization
dataset which is obtained from a handheld Kinect RGB-
D camera at 640 × 480 resolution. This dataset contains
significant ambiguities, motion-blur, flat surfaces and lighting
conditions so it is extremely challenging for purely visual
relocalization.

In all experiments, we assume the depth information is
unavailable. To make the image size match with network
input size, we rescaled the input image to 343× 256 pixel
from 640 × 480 pixel. Image mean for each scene was
subtracted.

B. Overall Settings

The models were trained using stochastic gradient descent.
The scale factor β in the loss function (3) was set to 20
in all experiments The momentum was 0.9, weight decay

was 0.0002 and minibatch size was 60. The initial learning
rate was 10−5 and dropped by 90% every 10000 iterations.
Training was ended at 45000 iterations. With two NVIDIA
Titan X GPUs, training took about three hours. During
training, crops of 224× 224 pixel were randomly extracted
from the images in the training set. During inference, only
the central crop of a test image was inputted to a model
unless otherwise specified.

Four models were evaluated in experiments:

• PoseNet-Euler6: This network is the same as PoseNet
except the orientation representation is Euler6.

• BranchNet-Euler6: Details can be found in III-C.
• PoseNet-Euler6-Aug: PoseNet-Euler6 augmented by

pose synthesis.
• BranchNet-Euler6-Aug: BranchNet-Euler6 augmented

by pose synthesis.

Test results are shown in Table II. As in [7] and [8], we
report median error for each scene. The angular error is de-
fined as the angle that is needed to convert CNN’s orientation
prediction to the orientation groundtruth. To calculate angular
error of Euler6, convert e and ê in (3) into rotation matrices
Re and Rê [21] and calculate rotation angle of R−1

e Rê. The
translation error is defined as the Euclidean distance between
CNN’s translation prediction and the translation groundtruth.

C. Euler6

Experimental results showed that PoseNet-Euler6 sig-
nificantly outperformed PoseNet (see Table II). PoseNet-
Euler6’s translation error had a 13.6% reduction over
PoseNet after replacing quaternion with our Euler6 as ori-
entation representation, while the orientation error was also
reduced 5.4%. This demonstrates that our novel orientation
representation Euler6 is more suitable for camera pose re-
gression compared to quaternion.

In what follows, we only report the results using this new
orientation representation.



TABLE II
MEDIAN ERRORS OF DIFFERENT MODELS ON THE 7 SCENES [2] DATASETS.

Scene PoseNet Bayesian PoseNet PoseNet-Euler6 PoseNet-Euler6-Aug BranchNet-Euler6 BranchNet-Euler6-Aug
Chess 8.12◦, 0.32m 7.24◦, 0.37m 6.51◦, 0.24m 5.34◦, 0.22m 6.55◦, 0.20m 5.17◦, 0.18m
Fire 14.4◦, 0.47m 13.7◦, 0.43m 12.27◦, 0.46m 11.04◦, 0.45m 11.73◦, 0.35m 8.99◦, 0.34m
Heads 12.0◦, 0.29m 12.0◦, 0.31m 14.83◦, 0.22m 12.49◦, 0.20m 15.50◦, 0.21m 14.15◦, 0.20m
Office 7.68◦, 0.48m 8.04◦, 0.48m 8.15◦, 0.41m 7.64◦, 0.36m 8.43◦, 0.31m 7.05◦, 0.30m
Pumpkin 8.42◦, 0.47m 7.08◦, 0.61m 6.51◦, 0.48m 5.41◦, 0.40m 6.03◦, 0.24m 5.10◦, 0.27m
RedKitchen 8.64◦, 0.59m 7.54◦, 0.58m 8.69◦, 0.50m 7.12◦, 0.42m 9.50◦, 0.35m 7.40◦, 0.33m
Stairs 13.8◦, 0.47m 13.1◦, 0.48m 11.9◦, 0.35m 10.99◦, 0.32m 10.99◦, 0.45m 10.26◦, 0.38m
Average 10.4◦, 0.44m 9.81◦, 0.47m 9.83◦, 0.38m 8.58◦, 0.34m 9.82◦, 0.30m 8.30◦, 0.29m

D. Pose Synthesis
Both PoseNet-Euler6-Aug and BranchNet-Euler6-Aug

augmented by pose synthesis outperformed their baselines
(see Table II). With pose synthesis, PoseNet-Euler6-Aug had
a 12.7% error reduction on orientation and a 10.5% error
reduction on translation while BranchNet-Euler6-Aug had
a 15.4% error reduction on orientation and a 3.3% error
reduction on translation.

Pose synthesis is able to alleviate overfitting. The average
training errors of PoseNet-Euler6 and PoseNet-Euler6-Aug
on 7Scenes were (2.80◦, 0.15m) and (3.03◦, 0.15m). With
pose synthesis, PoseNet-Euler6 got greater test error but
even smaller training error than the corresponding PoseNet-
Euler6-Aug, which indicates that overfitting occurred in
training PoseNet-Euler6.

The effect of dataset expansion can improve relocalization
performance while the label error will degrade relocalization
performance. These two factors are both proportional to the
distance r between centers of extracted patch and original
image. An experiment was designed to explore the influence
of r on relocalization performance. For convenience, we
constrained the sampled crops in a rectangle centered at the
origin and the size of this rectangle is [c+(H −c) · s]× [c+
(W − c) · s], where s is the range factor between 0 and 1, c
is the size of crop, H and W are the height and width of
the image. When s is 0, sampled crops are all located at
the center of training images. With s increasing from 0 to 1,
crops can be sampled from position farther from the center
of the image. When s is 1, crops can be sampled at anywhere
of the image.

Fig. 6 shows relocalization errors with different range
factor s on the Chess scene. When s was set to 0, relocal-
ization performance were worse than PoseNet-Euler6. This
demonstrates that random cropping could improve perfor-
mance of CNNs for camera relocalization. With s increasing,
both angular and translational errors decreased and reached
their minima when s was set to 1. The negative impact of
label error is suppressed by the positive impact of dataset
expansion. Similar conclusions can be drawn on other scenes
in this dataset.

E. BranchNet
We employed two individual PoseNet-Euler6-Aug to

regress orientation and translation separately and the aver-
age error over 7Scenes was (8.38◦, 0.25m). This method
outperformed a single PoseNet-Euler6-Aug, which indicates
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that regressing orientation and translation together brings
disturbance to each one’s training. But predicting poses with
two models is expensive.

BranchNet is a balance between a single PoseNet and two
separate PoseNets. But where to split into two branches is a
problem. We evaluate the influence of location for splitting
on the Office scene. The result is shown in Fig. 7. The
network without branch had the worst performance. The split
of final fully connected layer led to the greatest reduction of
both orientation and translation errors. With the increasement
of the number of shared layers, the errors are reduced firstly
and then converge. Similar conclusions can be drawn on
other scenes.

Compared with PoseNet-Euler6, the translational error
of BranchNet-Euler6 was reduced 21.1%. Compared with
PoseNet-Euler6-Aug, the translational error of BranchNet-
Euler6-Aug was reduced 14.7%. Orientation errors also had
certain reduction but the improvement was negligible.

Note that we simply choose “Icp6” as the splitting node
for BranchNet-Euler6 and it may not be the optimal splitting
depth.

Compared to PoseNet, BranchNet-Euler6-Aug had a
19.3% reduction on orientation error and a 34.1% reduc-
tion on translation error. Compared to Bayesian PoseNet,
BranchNet-Euler6-Aug had a 15.9% reduction on orientation
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Fig. 7. Median results of BranchNet-Euler6-Aug with different branch
splitting node on the Office scene.
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Fig. 8. Median results of PoseNet-Euler6 and BranchNet-Euler6-Aug
trained from scratch and fine-tuned from pretrained model.

error and a 38.3% reduction on translation error.

F. Fine-tuning

Fine-tuning generally leads to a faster and more accurate
training procedure. For fair comparison, we attempted to
train models from pretrained GoogLeNet model. In order
to adapt BranchNet-Euler6-Aug to pretrained GoogleNet
model, the numbers of channels of BranchNet-Euler6-Aug’s
specific layers were changed to the numbers of corresponding
layer’s channels in PoseNet-Euler6.

To our surprise, pretrained model from ImageNet [22]
did not lead to much better performance and even harmed
performance on some scenes compared to learning from
scratch. This suggests that the features learned from the
large-scale classification ImageNet benchmark [22] do not
generalize well on the indoor relocalization dataset.

G. Fully Convolutional Network

Evaluation with multiple crops of input image is a com-
mon method to improve performance. However, this ap-
proach is inefficient as the network needs to re-compute
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Fig. 9. Comparison of the models with and without fully convolution
inference scheme

each crop. For example, PoseNet was evaluated with 128
uniformly spaced crops of the input image, which resulted
in a 5% reduction of orientation error on 7Scenes and the
computational time increased from 5ms to 95ms with parallel
GPU processing.

We adopted a more efficient approach by using the full
convolution trick [23]. At inference time, we evaluated an
input image in the following way. First, the fully connected
layers in models were converted to convolutional layers with
1×1 kernel. Then, fully convolutional networks were applied
to the input image rescaled to 256×342 pixel and generated
a regression map. Finally, the regression map was spatially
averaged to obtain the final 9D pose vector.

Results are shown in Fig. 9. With fully convolutional
networks applied over the whole image, small improvements
were achieved. This demonstrates that spatial average could
improve the relocalization performance. It is not surprising
that the improvement is only about 2% since this testing
process is equivalent to averaging predictions over only eight
crops uniformly distributed in the image due to the limited
image size.

H. Efficiency of the BranchNet

We kept the number of parameters of BranchNet similar
to that of PoseNet [7]. Storing weights took 46 MB for
BranchNet-Euler6. Branching networks slowed down the
forward speed from 5ms to 6ms per frame on a NVIDIA
Titan X GPU. We then tested BranchNet-Euler6 in the GPU
of an Intel NUC mobile platform (Intel CoreTM i5-6260U)
with clCaffe [24], and reached a speed of 43 fps, which meets
the real-time requirement of many robotic applications.

V. CONCLUSION AND DISCUSSION

In this paper, we present three techniques for CNN-based
camera relocalization. The first one is a new orientation
representation Euler6. The second one is the pose synthesis
for data augmentation. And the third one is the BranchNet
for multi-task regression. Experiments showed that all of the
above techniques improved the relocalization accuracy, and



they together reduced the error of previous methods by a
significant margin.

One limitation of our approach, as well as PoseNet ap-
proaches [7], [8], is that it is only suitable for scenarios
while depth information is unavailable because when depth
information is available, there exist much more accurate
approaches, for example, SCoRe Forests [2]. We attempted
to utilize the depth information by simply add the depth
image as the fourth channel to the original input which has
RGB channels but did not obtain much better results than
our current results. How to utilize the depth information to
improve the performance of CNN remains to be an open
problem.
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