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Traffic Sign Detection based on Convolutional Neural Networks

Yihui Wu, Yulong Liu, Jianmin Li, Huaping Liu, Xiaolin Hu

Abstract— We propose an approach for traffic sign detection
based on Convolutional Neural Networks (CNN). We first
transform the original image into the gray scale image by
using support vector machines, then use convolutional neural
networks with fixed and learnable layers for detection and
recognition. The fixed layer can reduce the amount of interest
areas to detect, and crop the boundaries very close to the
borders of traffic signs. The learnable layers can increase the
accuracy of detection significantly. Besides, we use bootstrap
methods to improve the accuracy and avoid overfitting problem.
In the German Traffic Sign Detection Benchmark, we obtained
competitive results, with an area under the precision-recall
curve(AUC) of 99.73% in the category “Danger”, and an AUC
of 97.62% in the category “Mandatory”.

I. INTRODUCTION

Driver assistance systems (DAS) have received more and
more attentions from both academy and industry areas.
Among various functions of DAS, the traffic sign detection
has become one of the most important modules since it
provides alerts for the drivers to relieve the pressure of
driving. Detection of traffic signs has been a popular problem
in intelligent vehicles since the middle of 1990s, and various
methods have been proposed by researchers.

Because traffic signs usually have specific colors, the
color-based methods are commonly used. These methods of-
ten use a threshold to separate traffic signs from background
[1]. Some researchers use HSI color space instead of RGB
and has achieved good performance [2]. A novel color space
Eigen color proposed based on Karhunen-Loeve (KL), is
used for traffic sign detection [3]. The main disadvantage of
these color-based methods is that it is difficult to set the value
of threshold because the color information is not invariant in
real-world environment with different lightening conditions.

Methods based on shape of the traffic signs, have also been
widely used. In [4] a method is proposed using smoothness
and Laplacian filter to detect round signs. In [5] a method
designed to detect triangle signs based on gradient and orien-
tation information is proposed. In [6] a detection algorithm
by using Hough transform is introduced. In order to speed up
the detect algorithm, [7][8] use a fast detection method based
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on the symmetry on Radial direction of triangle, square,
diamond, octagon and round signs. Most of the methods
above rely on gradient features, which are really sensitive to
noise. Because color information and shape information are
both useful to traffic sign detection, it is natural to combine
these two kinds of features. In [9] images are segmented in
HSI color space, and template matching techniques are then
used to find traffic signs.

Although the detection of traffic signs has been studied
for years, there still exist many challenges. For example,
the background clutter may introduce strong disturbances. In
addition, the color of traffic sign is very sensitive to lighting
conditions (sun, shadow), weather (sunny, rain, snow) and
time (morning, noon, night), etc. Last but not least, the partial
occlusion dramatically affects the detection performance.

Recently, Convolutional Neural Network has been adopted
in object recognition for its high accuracy [10] [11] [12] [13].
In [10], a multi-layer convolutional networks is proposed
to boost traffic sign recognition, using a combination of
supervised and unsupervised learning. This model can learn
multi stages of invariant features of image, with each layer
containing a filter bank layer, a non-linear transform layer,
and a spatial feature pooling layer. Feeding the responses of
both two convolutional layers to the classifier can achieve an
accuracy of recognition as high as 99.17%.

Inspired by the excellence of traffic sign recognition
using Convolutional Neural Network (CNN), we proposed
a method based on CNN, using fixed and learnable filters
to detect traffic signs on scene images. To accelerate the
detection speed, color information is used to choose the
areas we are interested in. Besides, the responses of images
convolving with fixed filters we defined before training are
fed to learnable filters. The results of the two learnable
filter layers are branched to a 2-layer nonlinear classifier
separately. The learnable filter layers and the classifier are
trained in a supervised way. The fixed filter layer can
decrease the number of windows we need to analyze. We
obtained good results in the competition of German Traffic
Sign Detection Benchmark [14], with an AUC of 99.73%
in the category “danger”, and an AUC of 97.62% in the
category “mandatory”.

The specific contributions of this paper are as follows: we
used a convolutional neural network combined with fixed
and learnable filters to detect traffic signs(see section 3),
and obtain competitive results in the category of “danger”
and “mandatory”. Besides, bootstrap method is adopted to
learn from the misclassified training samples to decrease
the rate of false positives and false negatives(see section
3 part C). In addition, the data augmentation of enlarging
positive samples by rotation, translate, scale transformation
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can prevent overfitting problem(see section 4 part A).

II. THE DATASET

The task of GTSDB [14] is to detect 3 types of traffic
signs: “Prohibitory”, “Mandatory” and “Danger”. Our work
mainly focused on the “Mandatory” and “Danger” category.
“Mandatory” signs are circle, with white arrows in the middle
of blue background. “Danger” signs are triangle with white
background and red borders. Examples of the two categories
are shown in Figure 1.

(b) Danger Samples

Fig. 1. Samples

The training dataset contains 600 scene images (1360 x
800 pixels) and the traffic signs cropped in these images.
The size of the traffic signs ranges from 16 x 16 to 128 x
128. The testing dataset contains 300 scene images (1360 x
800 pixels) with zero to six traffic signs occurred in each
image.

III. THE ARCHITECTURE

In this paper, we use color information and CNN to detect
traffic signs. A simple flow chart shows the whole process
of our algorithm in Figure 2 and Figure 3.

Fig. 2. An illustration of the processing steps of our algorithm. To
detect each kind of traffic signs from background or other traffic signs,
first transform RGB images to gray scale images using SVM, then feed the
results to CNN. The fixed layer detect ROIs, and learnable layers extract
distinguishing features for the classifier to find out traffic signs of the target

group.

To accelerate the detection process, we use color infor-
mation to do some data preprocessing for testing dataset. It
converts the original scene image into a gray scale image.
Traditional color transformation methods use color spaces
like HSV or Lab to deal with the difficulty introduced by
color deviation due to various lighting conditions, different
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Fig. 3. Architecture of learnable layers. The outputs of two learnable
layers are fed to the classifier separately. The parameters of learnable layers
and the classifier are trained simultaneously in supervised way. The 2-layer
classifier is fully connected with 100 neurons in the first layer and 2 neurons
in the second layer.

weather conditions or natural fade, and static or dynamic
thresholds are used to segment the whole image. But we learn
the threshold instead of using manually fixed or dynamic
threshold to establish the mapping between RGB value and
gray scale value (intensity value). The color transformation
based on Support Vector Machine in the preprocess step
can avoid the sensitivity to color differences in different
lightening conditions [15]. At first we extract pixels from
training data, and classify them into positive pixels and
negative pixels with Support Vector Machine (SVM). For
example, in the category “mandatory”, positive pixels are
those blue ones inside mandatory signs, and negative pixels
are non-blue pixels. Then we train a classifier [16], and use
the classifier’s offset as the map between RGB and gray scale
value.

Convolutional Neural Networks (CNN) are hierarchical
neural networks with multiple layers (see Figure 2). The
first layer convolves the gray scale image obtained in the
color transform step with fixed filters and compares the
correlation coefficient value with threshold to detect areas
possibly containing traffic signs. The learnable layers extract
multi-scale features for classifier to judge whether it is a
traffic sign in the required category or not.

A. Fixed Layer

Fig. 4. Mandatory Filter

During the processing of fixed layer, correlation coefficient
values are used to describe the degree of matching between
a filter and a test patch. A higher value indicates that the
region is more likely to contain a traffic sign.

Filters we use in mandatory signs are shown in Figure 4.
The shape of this kind of signs is not sensitive to rotation
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because they are circular, so we only use one filter for each
class of mandatory signs. Danger signs’ filters are shown in
Figure 5. The reason why we use five filters to match one
shape is that rotation has a significant effect on the shape of
this category of signs.

Because the size of traffic signs in the images ranges from
16 x 16 to 128 x 128, multi-scale matching is required. In our
experiment, we choose 1.05 as our filter scale-rate because
this value can achieve satisfactory result in the acceptable
computing time. For every specific filter in each scale, we
extract every patch which has a correlation coefficient value
larger than the threshold. By changing the threshold, we can
generate a group of regions of interest (ROI).

Since this algorithm does not check the overlapping patch-
es, there may exist a lot of ROIs around one traffic sign. In
order to solve this problem, a simple algorithm is introduced
to merge ROIs. For each image, the ROIs are sorted by
correlation coefficient value in descending order, then the
one with highest value is chosen as a positive region and all
regions near this region are deleted. Repeat this step until no
regions left. In this paper, nearby areas are regions whose
distances of top-left points are less than 16 pixels in both
x-axis and y-axis(16 is the minimum size of traffic signs in
the data set).

The whole process of ROI extraction is shown in Figure
6.

B. Learnable Layers

The learnable layers constitute the traditional convolution-
al network. The choice of architecture affects the efficiency
of CNN significantly. Each learnable filter layer contains
a filter bank layer which convolves different filters with
images, a non-linear transform layer using | tanh |, a pooling
layer, and a local norm layer. We discussed several architec-
tures to choose an appropriate one.

1) Filter Bank Layer: In [10] different choices of CNN
architecture are compared. A multi-stage CNN feeding the
features extracted in both of the two stages into the classifier
outperforms the CNN which also has two stages but only
uses the second stage’s responses to classify. Since the
features extracted in the first stage are more local and detailed
while the ones from second stage are relatively more global,
feeding responses of both of the two stages can increase
the accuracy. In our experiment, we adopted the multi-stage
CNN feeding features of both two stages into the classifier
and compared different multi-stage CNN architectures, like
6-16, 16-512, 108-200, where the left number is the number
of filters extracted in the first layer while right is the number
of the second layer (see Figure 3).

Original Image

Color transformation.
Got intensity image

Fixed filter detection.
A lot of ROIs around
one traffic sign

Merge adjacent ROIls
Only one left

Fig. 6. Process of ROI extraction

2) Lp pooling: The spatial pooling layer is often used
after the feature extraction to summarize the joint distribution
of the nearby pixels. In [17], pooling in a local region boosts
invariance with little shift and small noise of the region. The
pooling method processes the input image as:

0=0"3 1(.5)" x Gi, )" ¢))

Where I stands for the input image, G stands for the gaussian
kernel. The choice of P number varies from 1 to p — oc.
When P = 1, it is average pooling; when p — oo, it’s
maximum pooling. During the experiment, we set P = 4.

3) Normalization: In [18], a local normalization method
is proposed, which can be divided as subtractive normaliza-
tion and divisive normalization. It can decrease the relevance
of nearby pixels thus boosts the contract of images with
noise. The subtractive normalization computes the output of
pixel x5, as following: viji = Tijk — D2, Wpq * Tij+p,k+q
where j,k is the x-coordinate and y-coordinate of pixels; ¢ is
the filter number; p,q is the width and height of kernel, w is
the gaussian weight of the kernel subject to qu Wpq = L.

The divisive normalization computes the output of z;;,
as following: y;jr» = wvijx/ max(c,o0j;) where o, =
(X ipq Wpa - Uﬁj+p,k+q)1/2: ¢ = mean(d;1), Vj, k
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C. Bootstrap

Bootstrap is an efficient method to improve the perfor-
mances of classifiers. Adding samples wrongly classified
in the validation set to training set by bootstrap not only
automatically includes traffic signs difficult to detect due to
occlusion, exposure, spotted or other circumstances, but also
enables the classifier to distinguish some patches which are
similar to a certain category of traffic signs but are not. In
the detection of category “mandatory”, we add a bootstrap
step during training. We detect ROI in all of 600 images
of training data, use ROI as a test on the training data, and
extract the patches which are wrongly classified compared
to ground truth. We jitter the patches and add them to the
training data like below:

1) 1-class wrongly classified as 0O-class: perturbed like
other 1-class training data(see section 4 part A), with
30 jitters of each patch;

2) 0-class wrongly classified as 1-class: perturbed like 1-
class, with 7 jitters of each patch.

After training for a second time, both the false positive and
false negative rate decreased more than 1% in the validation
set. In the test phase, the classifier training with bootstrap
improves the AUC from 93.81% to 97.62%, which shows
that bootstrap is helpful to reduce the misjudgement.

IV. EXPERIMENT

In the experiment, we used a system as following:

1) CPU: Intel(R)Xeon(R) CPU E5620 @2.40GHz x 2
2) memory: 32G DDR3

The learnable layers of CNN was implemented using the
EBLearn C++ open-source package [19].

A. Data Preparation

The training data provided on the benchmark contains
four categories: “Prohibitive”, “Danger”, “Mandatory” and
Other traffic signs, and we only need to distinguish each
category from others. For each category, the training data is
divided into two classes, the class that contains traffic sign
labeled 1, and the class that contains no traffic sign labeled
0. During training phase, the 1-class mainly contains the
patches provided in the TrainlJCNN2013 grouped under the
category and perturbed in position ([—4, 4] pixels, step 2), in
scale ([.9,1.1], step .1), in rotation([—15, 15], step 6). Each
patch has 30 randomly chosen jitters. Jittered patches can
increase the robustness of classification in case of different
views of point, and different alignments of bounding boxes.
The 0-class data contains the patches provided grouped under
other 3 categories as well as small patches randomly chose
from the 600 scene images. From each image, we randomly
chose 15 patches, with random locations and random sizes
ranging from 16 x 16 to 128 x 128 (not include or overlap
traffic signs).

In order to make better use of training data, we assigned
the proportion of training data and validation to be 2 : 1.
To test the efficiency of different architectures, we extracted
ROIs in all 600 scene images for training and compared the

results with ground truth to get labels of ROIs. These ROIs
were used for test on the training data. The data size of
training, validation, and test on the data of TrainlJCNN2013
are listed, each column contains the size of 0-class and 1-
class (see Table I).

TABLE I
DATA SIZE ON THE TRAINING DATA

Category Training(0:1) | Validation(0:1) | Training Test(0:1)
Danger 6400:2840 3200:1420 890:1849
Mandatory 6093:2080 3046:1040 8656:1640

Since we need to convolve the filters with patches in the
same size (need not be in the same size with filters), we
resized the training data (ROIs) to 32 x 32 and converted
the images from RGB to YUV space. Then we extracted
the data of Y channel to train our model, and discarded the
U and V channels. In other words, we only used gray-scale
information, because we have already used color information
during the ROI extract phase(see section 3).

B. Experiments on the Training Set

We generated 25 groups of ROI using the method of color
transform and fixed layer. Each group of ROI was generated
in a specific threshold on the correlation coefficient values.
In our experiment, the value ranges from 0.41 to 0.65 step
by 0.1. The sizes of regions are between 16 and 128.

To compare the performances of different architecture, we
used three architectures: 6-16, 16-512, 108-200 under the
category of “Mandatory” (see Table II), “Danger” (see Table
III). FP stands for false positive, FN stands for false negative.
The test set is the ROIs extracted in the TrainlJCNN2013 (see
Data Preparation).

TABLE II
COMPARE OF DIFFERENT ARCHITECTURES, CATEGORY MANDATORY

architecture | No. of parameters FP FN
6-16 40406 9.12662% | 10.2439%
16-512 934382 6.86229% | 8.84146%
108-200 1290326 5.27957% | 9.26829%
TABLE III

COMPARE OF DIFFERENT ARCHITECTURES, CATEGORY DANGER

architecture | No. of parameters FP FN
6-16 40406 11.236% | 6.11141%
16-512 934382 10.3371% | 5.40833%
108-200 1290326 9.55056% | 6.27366%

We can see 108-200 outperformed than other architectures.
We suggest that more features extracted in the first stage can
learn more local features and provide more randomly chosen
features for the second stage to choose. However, with more
complicated architecture to test, more time would be spent
in training the model and detecting one image.

The training time of learnable layers is increased with the
number of parameters to learn. We use the misjudgement of
validation to determine the training iterations. Figure 7 shows
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the misjudgement on validation datasets of different architec-
tures. Generally, simple architectures need more iterations
to achieve the same validation error. 108-200 can achieve
the lowest validation error in the given time. However, the
training time of each epoch has to be considered. 6-16 can
finish one epoch in 2 minutes, while 16-512 in 16 minutes,
and 108-200 in 1h 15m.
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Fig. 7. Influence of different architectures of learnable layers on the
validation errors through training. Top row: the validation error of 6-16,16-
512,108-200 in the category “danger”. Top row: the validation error of 6-
16,16-512,108-200 in the category “mandatory”. Other parameters are the
same, 1 = le-5, P = 4.

The detection time of CNN on the training set is shown
in Table IV and Table V.

TABLE IV
DETECTION TIME ON DANGER TRAING SET, SIZE 2739

architecture | No. of parameters | time per ROI(s) | val error(%)
6-16 40406 0.0025 0.32
16-512 934382 0.022 0.05
108-200 1290326 0.108 0

TABLE V
DETECTION TIME ON MANDATORY TRAING SET, SIZE 10296, NOT
FINISHED DURING THE COMPETITION PHASE

architecture | No. of parameters | time per ROI(s) | val error(%)
6-16 40406 0.0027 0.05
16-512 934382 0.023 0.12
108-200 1290326 0.128 0.09

From Table IV and Table V we can see that as the number
of parameters increase, the time cost rise significantly, from
0.002s to 0.100s (no parallel computing was implemented).
To achieve real-time detection speed, we can use simpler ar-
chitecture. In the category “Mandatory”, 108-200 can achieve
0 val error after training with bootstrap, which is the best
performance in the three architectures, so we detect the traffic
signs with 108-200 architecture in the category “Mandatory”
and “Danger”. After competition, we compared performance
of the three architectures in the category “Danger”, and
found detection of 6-16 is 0.17% more accurate than 108-
200 (99.9% vs 99.73%). Besides, using simpler architecture
can reduce the time spent on training and detection.

From the color transform and fixed filter layer, we can
usually get 5-20 interest areas per image to be classified more
carefully, and this process costs 10-30s per image depending
on the assignment of threshold of color transform and fixed
layer. For learnable filter layers with the architecture of 108-
200, a scene image would need about 2s (0.1 s per ROI).
However, considering that if we use sliding window, we need
to search in multi-scale and every location in the image,
which is far more than 5-20 regions currently used. If we
search traffic signs size ranges from 16-16 to 128-128 in a
image as large as 1600x800, we need to detect some 10000
regions, which may cost far more time with complicated
networks. Considering if we use Graphics Processing Units
(GPUs) or some parallel computing method, the time of
detection will be decreased further. What’s more, to improve
the detection speed in reality, we need to use efficient
tracking method to decrease the frames we actually deal with.

The error of FP and FN in the validation set decreased sig-
nificantly after bootstrap (see Table VI). We would compare
the result of bootstrap and no boost in the test data (provided
in the test phase) to see the efficiency of bootstrap.

TABLE VI
COMPARE BETWEEN BOOTSTRAP AND NO BOOTSTRAP IN THE
VALIDATION SET, MANDATORY, 108-200

Method FP FN
no bootstrap | 5.27957% | 9.26829%
bootstrap 3.74307% | 7.9878%

C. Experiment on the Test Set

In the test phase, we compare the result using only ROIs
and using both ROIs and CNN recognition module to see the
contribution of each module (see Figure 8).
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Using learnable layers, with the same recall, we can get
pretty much higher precision rate.

Based on the experiment on the training set, we compared
the efficiency with bootstrap or not using the same architec-
ture of 108-200 in the test set in Category “Mandatory”(see
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Figure 9 and Figure 10). The bootstrap method improves the
recall rate, with less false negatives.
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In the Category “Danger”, the result without bootstrap
using architecture of 108-200 is good enough, so we didn’t
do bootstrap(see Figure 10).
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Fig. 10. 108-200, Danger, test-phase

The results of category mandatory and danger in the
competition are listed in Table VII and Table VIII. Our team
is “wff” with the result of 99.72% in the category “Danger”,
and 97.62% in the category “Mandatory”. We use the same
architecture to detect both categories in the competition
phase, namely a fixed layer, and 108-200 learnable layers
with L,, pooling (P = 4).

TABLE VII
THE RESULT OF AUC OF CATEGORY DANGER

TEAM METHOD AUC
visics boosted_intC'hn_ratio-scales 100%
visics boosted_intChn_ratio_norm 99.95%

wgy@HIT501 HOG_LDA_SVM_ADJ2 99.91%
wif color + cnn 99.73%

TABLE VIII
THE RESULT OF AUC OF CATEGORY MANDATORY

TEAM METHOD AUC

wey@HIT501 HOG.LDASVM?2 100%
wif color + cnn + boost 97.62%
visics boosted_intChn_multiScale | 96.98%

V. CONCLUSIONS AND FUTURE WORK

In this paper, an approach based on the combination of col-
or transformation and Convolutional Neural Networks (CNN)
is proposed. Working on the image preprocessed by color
transformation, the CNN with fixed and learnable layers has
achieved good results. The merits of the CNN we used are
as follows: First, fixed layer can reduce the amount of areas
the classifier need to deal with, which could speed up the
detection significantly. Second, the ROIs generated by fixed
filter are very close to the borders of traffic signs, therefore
the problem of alignment is avoided, otherwise performance
of supervised convolution network would degrade. Third,
CNN with appropriate architecture learned in the supervised
way has been proved to be suitable to extract features for
traffic sign classification. Our experiment results strongly
supported our conclusion.

A drawback of the proposed model is that it can not
do real-time detection. Our future work is to improve the
efficiency of this algorithm. Parallel algorithm can be intro-
duced to speed up the process time of fixed and learnable
layers. The process time of multiple learnable layers could
be decreased by introducing sparsity in extracting features.
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