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Effects of Pre-training on Pruning

In the main text, we explore the effects of pre-trained
weights on pruned structures by visualizing the structure
similarity matrices. Here we present more similar results of
ResNet20 and ResNet56 models on CIFAR10 datasets.

Figure S1 and S2 show the results. All the pruned models
are required to reduce 50% FLOPS of their original mod-
els on CIFARI10 dataset. In each figure, (a) we display the
correlation coefficient matrix of the pruned models directly
learned from randomly initialized weights (“random”) and
other pruned models based on different checkpoints during
pre-training (“Epochs”) (top-left). We display the correla-
tion coefficient matrix of pruned structures from pre-trained
weights in a finer scale (right). We show the channel num-
bers of each layer of different pruned structures (bottom-
left). Red line denotes structure from random weights; (b)
similar results from the experiment with a different random
seed; (c) we display correlation coefficient matrices of all the
pruned structure from five different random seeds. We mark
the names of initialized weights used to get pruned structure
below.

For ResNet20 and ResNet50, we observe the same phe-
nomena with those in VGG16. First, that the pruned struc-
tures learned from random weights are not similar to all the
network structures obtained from pre-trained weights. Sec-
ond, the pruned model structures learned directly from ran-
dom weights are more diverse with various correlation coef-
ficients. Third, the pruned structure based on the checkpoints
from near epochs are more similar with high correlation co-
efficients in the same experiment run.

The only difference between ResNet models with VGG16
is that the the similarities of the pruned structure based on
the pre-trained weights of different random seeds are not as
high as those of VGG16. This is mainly due to the fact that
we only prune the layers on the residual branch in ResNet.
In the case that the channel numbers of backbone layers
are fixed, the number of channels of these pruned layers
can have greater freedom of choice, so that they didn’t con-
verge to the same structure. However, the similarity between
pruned structures based on pre-trained weights is still higher
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than that obtained from random weights. These results fur-
ther validate our analysis in the main text.

Experiment Settings

Channel Gates Location

Following the same practice in Network Slimming (Liu et al.
2017), we associate the channel gates at the end of Batch-
Norm layer (Ioffe and Szegedy 2015) after each convolu-
tional layer, since we can use the affine transformation pa-
rameters in BatchNorm to scale the channel output. For the
residual block, we only associate gates in the middle layers
of each block. For the depth-wise convolution block in Mo-
bileNetV1 (Howard et al. 2017), we associate gates at the
end of the second BatchNorm layer. For the inverted resid-
ual block in MobileNetV2 (Sandler et al. 2018), we associate
gates at the end of the first BatchNorm layer.

ImageNet Models Initialization

Table S1: ImageNet model initialization settings. C;,, de-
notes the base channel number.

Model FLOPS (j, Sparsity Multiplier

150M 20 0.80 1.00

MobileNet vi ~ 286M 32 0.75 1.00
567M 48 0.67 1.00

210M 32 0.75 0.75

MobileNet v2 300M 40 0.80 0.90
510M 50 0.80 1.30

1.0G 64 0.50 0.50

ResNet50 2.0G 64 0.75 0.75
3.0G 64 0.85 0.85

4.1G 80 0.80 0.90

Table S1 summarizes ImageNet model initialization con-
figurations.

Ablation Study

In the following sections, we explore the performance of our
method under different channel expansion rate, pruning ratio
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Figure S1: Exploring the effect of pre-trained weights on pruned structure by using ResNet20 model.
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Figure S2: Exploring the effect of pre-trained weights on pruned structure by using ResNet56 model.
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Figure S3: Effects of different expansion rate on the pruned
model accuracy. Red dotted lines denote the baseline full
models accuracy. VGG16 and ResNet56 models are trained
on CIFAR10 dataset for five runs. MobileNet V1 and
ResNet50 models are trained on ImageNet.
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Figure S4: Effects of different pruning ratio on the model
accuracy. Red dotted lines denote the baseline full models
accuracy. All the models are trained on CIFAR10 dataset for
five runs.
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Figure S5: Effects of different sparsity ratio on the model
accuarcy. Red dotted lines denote the accuracy of baseline
full models.

and sparsity level.

Channel Expansion Rate

We have proposed to use a width multiplier to enlarge the
channels of each layer as channel expansion uniformly in the
previous section. We further investigate the effect of differ-
ent expansion rate to the final pruned model accuracy. Fig-
ure S3 displays the results. All the pruned models are re-
quired to reduce 50% FLOPS compared to the full models.
From the figure, we find that a general trend of the influ-
ence is that when the expansion rate is too large, the pruned
model performance will deteriorate. We also surprisingly
notice that using the channel shrinkage (0.75x expansion)
can even achieve higher pruned model performance in some
situations. This is because the preset reduced model capac-
ity can limit the search space, which makes the pruning al-
gorithm easier to find efficient structures.

Pruning Ratio

In this section, we explore the performance of the pruned
model under different pruning ratio. Figure S4 displays
the results. For each pruned model, the channel impor-
tance is learned by setting predefined sparsity ratio r as
1 —pruning_ratio. Also, all the models are trained under the
same hyper-parameter settings with budget training scheme.
From the figure, we conclude that our method is robust un-
der different pruning ratio. Even under the extreme situation
where a large portion of FLOPS is reduced, our method still
achieves comparable prediction performance.

Sparsity Ratio

In this section, we explore the effects of different sparsity
ratio on the performance of the pruned model. The prede-
fined sparsity ratio r is utilized to restrict the overall sparsity
of channel importance value. Figure S5 summarizes the re-
sults. All the models are required to reduce 50% FLOPS of



the original full models. From the figure, we observe that
the final pruned model accuracy is not very sensitive to the
sparsity ratio, though a small sparsity level may have the
negative impact on the performance. This demonstrates that
our method is stable for a range of sparsity ratio and does
not require hyper-parameter tuning.
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