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It is well known that there exist nonlinear statistical regularities in natural
images. Existing approaches for capturing such regularities always model
the image intensities by assuming a parameterized distribution for the
intensities and learn the parameters. In the letter, we propose to model the
outer product of image intensities by assuming a gaussian distribution
for it. A two-layer structure is presented, where the first layer is nonlinear
and the second layer is linear. Trained on natural images, the first-layer
bases resemble the receptive fields of simple cells in the primary visual
cortex (V1), while the second-layer units exhibit some properties of the
complex cells in V1, including phase invariance and masking effect. The
model can be seen as an approximation of the covariance model proposed
in Karklin and Lewicki (2009) but has more robust and efficient learning
algorithms.

1 Introduction

There have been many computational models for the simple cells and com-
plex cells in the primary visual cortex (V1). Simple cells are usually charac-
terized by Gabor functions for their sensitivity to edges, and complex cells
are known to perform a pooling operation among simple cells to achieve
phase invariance while remaining selective to orientations.

Simple cell properties have long been studied by modeling pixel inten-
sities of natural images. The output of these models, which are endorsed
by information theory and biological economic considerations, are usu-
ally constrained to be sparse or independent to each other. Typical models
include independent component analysis (ICA) (van Hateren & van der
Schaaf, 1998), sparse coding (Olshausen & Field, 1996), sparse restricted
Boltzmann machines (RBMs) (Lee, Ekanadham, & Ng, 2008), and K-means
clustering (Coates, Lee, & Ng, 2011). The main idea of these models is to
reconstruct image intensities with sparsity or independence regularization.
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All of these models can produce Gabor-like filters when trained on natural
images, which localize in both spatial and frequency domains.

These models cannot capture nonlinear statistical regularities in natural
images. In fact, there exists residual dependence among the learned basis
vectors (Schwartz & Simoncelli, 2001). This observation has motivated ex-
tensive studies for modeling complex cells. The past decade has witnessed
great endeavors in this direction. Hyvärinen, Hoyer, and Inki (2001) in-
troduced topographic nonlinear correlation of latent variables to account
for residual dependence among the ICA bases. The model is known as
topographic ICA (TICA). Other variants of ICA, such as independent sub-
space analysis (Hyvärinen & Hoyer, 2000) and the two-layer models in
Karklin and Lewicki (2005) and Köster and Hyvärinen (2010) have pro-
duced complex cell properties like orientation sensitivity and phase in-
variance. In these models, the first layer is linear, and the second layer is
nonlinear.

Instead of modeling image intensities directly like sparse coding (Ol-
shausen & Field, 1996), Karklin and Lewicki (2009) proposed modeling the
covariance of image intensities. The model accounted for not only phase
invariance but also complicated properties observed in physiological data,
such as surround suppression and masking effect. Ranzato and Hinton
(2010) proposed modeling image covariance with factorized Boltzmann
machines. They also made an effort to unify mean and covariance models
in a single energy function. More recently, Coates et al. (2011) incorporated
spike and slab prior into Boltzmann machines, and the resulting model uni-
fied the heterogeneous hidden units in covariance RBMs (cRBM) (Ranzato
& Hinton, 2010). A hallmark of these covariance models is that nonlinearity
is present in the first layer.

Our work is largely inspired by Karklin and Lewicki (2009). We propose
modeling the outer product of image intensities, a quantity closely related
to image covariance. The main idea is to assume a gaussian distribution
with parameterized mean for the outer product of image intensities and
then learn the parameters on natural images. The proposed model has two
layers, with nonlinearity embedded in the first layer. The overall formula-
tion enjoys a simple formulation similar to sparse coding (Olshausen and
Field, 1996; Lee, Battle, Raina, & Ng, 2007) and can be seen as an approxi-
mation of the model proposed by Karklin and Lewicki (2009). We will show
that our model, similar to Karklin and Lewicki’s model, is also able to cap-
ture some properties of V1 simple cells and complex cells, but in a more
efficient, stable, and biologically plausible way.

The rest of the letter is organized as follows. In section 2, the new model is
presented, which follows the discussion of connections to existing models.
The learning and inference algorithms are presented in section 3. Experi-
mental results are presented in section 4, and discussions are presented in
section 5.
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2 The Model

Throughout the letter, it is assumed that the mean of image patches x is zero,
which can be easily achieved by subtracting the mean of samples. The goal is
to model the outer product of image patches xxT. This amounts to model
the high-order interactions among the nonlinear relationship between all
pairs of components, that is, xix j. In contrast, a sparse coding approach
(Olshausen & Field, 1996) models the high-order interactions among all
components xi, which is a linear quantity.

Before presenting the models, we introduce some notations. Let ‖ · ‖F
denote the Frobenius matrix norm and ‖ · ‖2 denote the L2 vector norm.
vec(A) stands for a vector by stacking the columns of the matrix A from
left to right. “diag” denotes an operator for transforming a vector to the
diagonal matrix with the vector elements on its diagonal, or extracting
the diagonal vector of a square matrix, which can be determined from the
context.

It is assumed that xxT follows a nonzero-mean gaussian distribution
with a constant covariance matrix. Learning and inference operate on the
parameterized mean, similar to sparse coding (Olshausen & Field, 1996).
First, the mean is parameterized as the weighted sum of the outer products
of a set of bases {b1, b2, . . . , bK}, so

p(vec(xxT )|u, B) = N
(

vec

(∑
k

ukbkbT
k

)
,

1
γ

I

)
,

where B is the collective matrix formed by bk’s, u is the latent variable, I is
the identity matrix, and γ is a constant. Without loss of generality, we have
assumed that the covariance matrix of the gaussian distribution is isotropic.

This model is extended to a two-layer structure by introducing a second
layer of hidden units y and connection weights W between u and y as

uk =
∑

j

y jwk j.

We have

p(vec(xxT )|y, B,W ) = N

⎛
⎝vec

⎛
⎝∑

j,k

y jwk jbkbT
k

⎞
⎠ ,

1
γ

I

⎞
⎠ .

The latent variable (or model response) y is regularized by the Laplacian
distribution,

p(y) = L(0, 1).
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Then the joint distribution is

p(vec(xxT ), y|B,W ) ∝ exp

⎛
⎜⎝−1

2

∥∥∥∥∥∥xxT −
∑

j,k

y jwk jbkbT
k

∥∥∥∥∥∥
2

F

−γ
∑

j

|y j|

⎞
⎟⎠.

The goal is to maximize the likelihood of the data, that is, p(vec(xxT )|B,

W ). Note that

p(vec(xxT )|B,W ) =
∑

y

p(vec(xxT ), y|B,W ),

but this quantity is intractable. We approximate it with

max
y

p(vec(xxT ), y|B,W ).

Then the model becomes

max
B,W

max
y

log p(vec(xxT ), y|B,W )

or, equivalently,

min
B,W ,y

1
2

∥∥xxT − Bdiag(Wy)BT
∥∥2
F + γ

∑
j

y j

subject to
∥∥bk

∥∥2
2 ≤ 1,

∥∥w j

∥∥2
2 ≤ 1, wk j ≥ 0, y j ≥ 0

∀ j ∈ {1, 2, . . . , J}, k ∈ {1, 2, . . . , K}.

(2.1)

The first two constraints prevent the bases from growing unboundedly by
noticing that B,W , and y are coupled. The last two constraints ensure that
B diag(Wy)BT is positive semidefinite because xxT is so.

The proposed model has a hierarchical structure with the first-layer
units uk and the second-layer units yj. However, uk does not appear in
formulation 2.1 explicitly, and yj connects the first-layer bases bk through
weight wkj directly.

2.1 Connections to Existing Models. Model 2.1 enjoys a similar form
with the sparse coding model (Lee et al., 2007)

min
B,y

∥∥x − By
∥∥2

2 + γ
∑

k

|yk|,

subject to
∥∥bk

∥∥2
2 ≤ 1, yk ≥ 0,∀k ∈ {1, 2, . . . , K}.

(2.2)
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The essential difference is that equation 2.2 models a linear quantity x, while
equation 2.1 models a nonlinear quantity xxT .

Unlike the sparse coding model, which assumes that p(x|y) is a gaus-
sian distribution with parameterized mean By, Karklin and Lewicki (2009)
introduce a framework for learning the covariance statistics of natural im-
ages, which assumes that p(x|y) is a zero-mean gaussian distribution with
parameterized covariance matrix,

p(x|y,W , B) = N (0,C), (2.3)

where

C = exp

⎛
⎝∑

j,k

y jwk jbkbT
k

⎞
⎠

and exp(·) stands for matrix exponential (exp(A) = ∑∞
i=0 Ai). With a sparse

prior distribution on y, the first-layer bases B and second-layer bases (or
pooling matrix) W can be learned.

With the distribution in equation 2.3, the sample covariance matrix of x
given y is

Q = 1
N − 1

N∑
n=1

xnxT
n ,

which approximates C. Note that the matrix exponential in the expression
of C is used to ensure the positive definiteness of the covariance matrix.
At this moment, we assume that this operator is absent and the positive
definiteness is ensured by some other techniques; then Q approximates∑

j,k y jwk jbkbT
k . If we neglect the denominator in Q and let N = 1, then

xxT ≈
∑

j,k

y jwk jbkbT
k .

This is actually what we want to achieve with the proposed model in
equation 2.1 (see the first term of the objective function of that equation). In
this sense, our model can be regarded as an approximation of the covariance
model in Karklin and Lewicki (2009).

Karklin and Lewicki’s model suffers numerical difficulties introduced
by the matrix exponential operation in the covariance matrix C. Our model
does not involve matrix exponentials, which makes it possible to devise
efficient training algorithms.
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3 Inference and Learning

In model 2.1, inference of the hidden variable y given the bases B and W
amounts to solving a (convex) quadratic programming problem:

miny f1 = 1
2

∥∥xxT − B diag(Wy)BT
∥∥2
F + γ

∑
j

yj

subject to y j ≥ 0,∀ j ∈ {1, 2, . . . , J},
(3.1)

It can be shown (see appendix A) that this problem is equivalent to

miny f ′
1 = 1

2
yTAy + bTy

subject to y j ≥ 0,∀ j ∈ {1, 2, . . . , J},
(3.2)

where

A = W T((BTB) ◦ (BTB)
)

W , b = −W T((BTx) ◦ (BTx)
) + γ 1. (3.3)

In these equations, ◦ denotes the Hadamard (element-wise) matrix prod-
uct and 1 denotes a vector with all 1s. This is a standard quadratic program-
ming problem, and many algorithms, such as the conjugate gradient descent
algorithm, are available. We propose modifying the feature-sign algorithm
(Lee et al., 2007) for solving it, which was proved to be faster than the conju-
gate gradient descent algorithm in our experiments (data not shown). (See
algorithm 1.) The convergence of the algorithm is stated in theorem 1. The
proof is sketched in appendix B.

Theorem 1. The modified feature-sign algorithm converges to the solution of
equation 3.2 within a finite number of iterations.

This algorithm is suitable for parallelization with minibatches of data.
The cost function for a minibatch of M data samples is

f = 1
M

M∑
i=1

⎛
⎝∥∥x(i)x(i)T − Bdiag(Wy(i))BT

∥∥2
F + γ

∑
j

y(i)
j

⎞
⎠ ,

where the inference for different samples can be parallelized on multiple
cores.
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Algorithm 1:  Modified Feature-Sign Algorithm.

1 Initialize y := 0, θ := 0, and active set := {}, where θi ∈ {0, 1} denotes sign(yi).

2 From zero coefficients of y, select i = arg maxi −∂(1/2y T Ay +bT y )
∂yi

.

If −∂(1/2y T Ay +bT y )
∂yi

> 0, then set θi := 1, active set := {i} ∪ active set.

3 Feature-sign step:

Let Â denote a submatrix of A that contains only the rows and columns corre-

sponding to the active set.

Let b̂, ŷ, and θ̂ be subvectors of b, y, and θ corresponding to the active set.

Compute the analytical solution to the resulting unconstrained QP

(min ŷ 1
2
ŷT Âŷ + b̂T ŷ):

ŷnew := −Â−1b̂.
.
Perform a line search on the closed line segment from ŷ to ŷnew:

Check the objective value at ŷnew and all points where any coefficient changes

sign (while the rest remain nonnegative).

Update ŷ (and the corresponding entries in y) to the point with the lowest objec-

tive value.

Remove zero coefficients of ŷ from the active set and update θ := sign(y).

4 Check optimality:

(a) Optimality condition for nonzero coefficients:

∂(1/2y T Ay +bT y )
∂yi

= 0, ∀yj = 0.

If condition (a) is not satisfied, goto step 3 (without any new activation); else

check condition b.
(b) Optimality condition for zero coefficients:

−∂(1/2y T Ay +bT y )
∂yi

≤ 0,∀yj = 0.

If condition b is not satisfied, goto step 2; else return y as the solution.

Learning the parameters B and W in model 2.1 given y amounts to
solving

min
B,W

f2 = 1
2

∥∥xxT − B diag(Wy)BT
∥∥2
F

subject to
∥∥bk

∥∥2
2 ≤ 1,

∥∥w j

∥∥2
2 ≤ 1, wk j ≥ 0

∀ j ∈ {1, 2, . . . , J}, k ∈ {1, 2, . . . , K},
which is a nonconvex optimization problem. The projected gradient descent
method can be used for solving it. The parameters are first updated along
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the negative gradient direction with a fixed step size, then projected to the
constrained space, that is, all negative components of W are set to zero, and
each column of W and B is normalized to unit length.

Since W and B are coupled, a layer-wise scheme can be adopted. First,
set the second-layer bases W to the identity matrix and learn the first-
layer bases B. Then the model becomes a single-layer model in essence
(see equation 2.1). Repeat the following two steps alternately until some
stopping criterion is met. First, update B with

∂ f2

∂B
= (B diag(Wy)BT − xxT)B diag(Wy), (3.4)

and infer y by using algorithm 1. Second, fix B and learn W . Similarly,
update W with

∂ f2

∂W
= BT (B diag(Wy)BT − xxT)By, (3.5)

and infer y by using algorithm 1 until some stopping criterion is met.
Two alternative approaches for learning the bases would be updating B

and W simultaneously from the values learned in the first phase or from
random initialization of both. In our experiments, these approaches led to
qualitatively similar results but took longer.

4 Experiments

The proposed model was trained on the Kyoto Natural Images data set
(Doi, Inui, Lee, Wachtler, & Sejnowski, 2003). All images were transformed
to gray scale. A large number of random 20 × 20 image patches were
sampled from these images. After removing the mean pixel intensity, we
whitened the patches using principal component analysis (PCA) such that

(∑
m

∥∥x(m) − x(m)

whitened

∥∥2
F

)/(∑
m

∥∥x(m)
∥∥2
F

)
≤ 0.01,

that is, the lost variance after whitening was at most 1%. After whiten-
ing, 265 principal components were retained. All results reported in this
letter correspond to data transformed back to the original image space.
One thousand first-layer units and 100 second-layer units were used in the
experiments.

The parameters of the layer-wise approach for learning the bases are as
follows. First, W was fixed to the identity matrix I, and B was updated
starting from random values for 5000 iterations. During the first 4000 iter-
ations, the learning rate was fixed to 0.1, and at every iteration, 200 bases
were randomly selected for updating. During the last 1000 iterations, all
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Figure 1: First-layer bases learned on the Kyoto Natural Images data set.
(a) Visualization of the 1000 first-layer bases. (b) Fitted Gabor functions for
the bases visualized as line segments in a 20 × 20 patch. Twenty random bases
are highlighted in black. (c) Polar visualization of fitted Gabor functions as dots.
The angles correspond to the peak spatial frequency orientation, and the radii
correspond to log-transformed peak frequency.

bases were updated together with a learning rate of 0.03. We found that
this trick made the convergence faster than updating all bases from the
very beginning. Then B was fixed and W was initialized to random values
and updated for 1000 iterations with a fixed learning rate 0.03. The model
was trained with minibatches of 1000 samples. With parallelism, process-
ing each minibatch (including both inference and bases updating) in both
phases took an average of 0.7 seconds on an 8-core work station running
Linux.

4.1 First-Layer Results. The learned first-layer bases were edge detec-
tors with different scales, positions, and orientations, as plotted in Figure 1a.
We fitted parametric Gabor functions to the bases and visualized the func-
tions with line segments in Figure 1b. Each line segment depicts the length
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Figure 2: Quantitative comparison between the first-layer bases, ICA filters, and
experimental data from macaque’s primary visual cortex (De Valois, Albrecht,
& Thorell, 1982).

of the gaussian envelope of the Gabor function by its length, the orientation
of the Gabor function along the low-pass direction by its direction, and
the position of the Gabor function by its position. Figure 1c provides an
alternative view of the profile of the bases. For each basis, its peak spa-
tial frequency value (in negative logarithmic scale) was plotted against its
orientation. The bases densely covered the spatial-frequency plane.

We compared the spatial-frequency properties of the bases learned by
the model with the receptive fields of the V1 simple cells (see Figure 2). As a
reference, we also plotted the results of ICA, which were obtained by using
the companion codes of Hyvärinen, Hurri, and Hoyer (2009). The following
quantities were compared:

1. Spatial frequency bandwidth—the full width at half maximum
(FWHM) of each filter along the orientation of the peak in the am-
plitude spectrum.

2. Orientation bandwidth—the FWHM along a circle through the peak
in the amplitude spectrum, centered at zero spatial frequency.

3. Peak spatial frequency and peak orientation—spatial frequency and
orientation of the peak in the amplitude spectrum.
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Figure 3: Visualization of three second-layer units with their connection
weights to the 1000 first-layer bases. Each column illustrates a second-layer
unit. The top insets show the weights to all of the first-layer bases, where each
basis is represented by a line segment shaded by the weights. The bottom insets
show the first-layer bases corresponding to the five strongest weights connect-
ing to these units. The numbers above indicate the weight values.

4. Length and aspect ratio of the bases or receptive fields—the length
was the FWHM of the frequency envelope along the orientation into
which the filter was low pass, and the width was the FWHM along
the orientation into which the filter was bandpass. The aspect ratio
was the ratio of length and width.

The learned bases had a similar distribution to the receptive fields of V1
simple cells in the spatial frequency bandwidth (see the top left of Figure 2)
and peak spatial frequency (bottom left). However, the bases tended to be
tuned to a narrower orientation bandwidth, which made it more sensitive
to orientation changes (see the top right of Figure 2). In addition, they
had a longer shape and thus a higher aspect ratio (see the middle right of
Figure 2). Such deviations from physiological data can also be observed
in the results of ICA (see Figure 2 and van Hateren & van der Schaaf,
1998). The data source, remaining degrees of freedom (number of retained
dimensions of PCA whitening), patch size, and number of hidden units
could all contribute to these deviations. In addition, the distributions of
orientations of the bases obtained by the proposed model and ICA were
similar (see the bottom right of Figure 2). But in this case, the physiological
data were not available.

4.2 Second-Layer Results. The 1000 fitted Gabor filters were plotted
as line segments in a single 20 × 20 image patch (see Figure 1b). Each
second-layer unit was visualized by shading the line segments according to
the connection weights between this unit and the first-layer bases. Figure 3
provides three examples. The second-layer units were selective to a range
of bars within the patch, which shared similar orientations but located at
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Figure 4: Response properties of the second-layer units are similar to physio-
logical data from V1 complex cells. For each unit, the most responsive input
grating was first determined; then its angle (left) and phase (middle) were var-
ied. In addition, another grating with different orientations was imposed on the
most responsive grating (right). The curves with filled circles depict the mean
response of the 100 second-layer units, and the gray areas illustrate the stan-
dard deviation. The curves with “x” marks from left to right depict the firing
rates of V1 neurons extracted from Jones, Wang, and Sillito (2002), Movshon,
Thompson, and Tolhurst (1978), and Bonds (1989), respectively, which were
normalized by dividing the maximum values over the original curves.

different locations, in accordance with the phase invariance property of
complex cells in V1.

We then quantitatively compared the properties of the second-layer units
with some physiological results of the V1 complex cells. Given the most
responsive grating input to a model neuron, we varied its orientation or
phase, or superimposed another grating with different orientations, and
recorded the responses, which were then normalized to have a maximum
value 1. Figure 4 shows the mean response of all second-layer units (filled
circles), which is in agreement with physiological data (“x” mark).

It was found that the generalization ability of the model was better than
the sparse coding model for describing the nonstationary statistics in natural
images. As did Karklin and Lewicki (2009), we projected the responses of the
model induced by natural image patches into lower-dimensional space to
visualize the ability of the model to distinguish different regions. One thou-
sand random patches of size 20 × 20 were extracted from each of the four re-
gions on a natural image: waterfall, tree leaves, water ripples, and horizontal
wave (see Figures 5a and 5b). We projected the raw pixels (see Figure 5c),
the responses of the sparse coding model (see Figure 5d), and the responses
of the proposed model (see Figure 5e) into 2D space with linear discrim-
inative analysis (Cai, He, & Han, 2008). The responses of the proposed
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Two-dimensional projection of image patches and model responses.
(a) A picture of a natural scene with four selected characteristic regions. (b) Five
random image patches from each selected region. (c) Two-dimensional projec-
tion of raw pixel intensities. (d) Two-dimensional projection of sparse coding
responses. (e) Two-dimensional projection of the two-layer model responses.
(f) Two-dimensional projection of the reduced model responses.

model exhibited a clustering effect with respect to the four regions. Sparse
coding, though sharing a similar model structure, failed to capture such
statistical regularities. The sparse coding results were obtained by using
the companion codes of Lee et al. (2007).

Further investigations revealed that this property was introduced not by
the hierarchical structure but by the nonlinearity in the first layer. When we
setW = I, the model degenerated to a single-layer model. The 2D projection
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(a) (b)

Figure 6: Eigenvalues and eigenvectors of C̃ j for a second-layer unit. See the
text for the definition of C̃ j. (a) The 265 eigenvalues in descending order. (b) The
corresponding eigenvectors arranged from left to right and top to bottom.

of responses of this reduced model also exhibited a clustering effect (see
Figure 5f).

As discussed in section 2.1, the matrix
∑

j,k y jwk jbkbT
k approximates the

covariance matrix defined in equation 2.3. The contribution of each second-
layer unit j can be dissociated from the summation as C̃ j = ∑

k wk jbkbT
k .

Similar to Karklin and Lewicki (2009), we calculated the eigenvalues and
eigenvectors of C̃ j for all j. Figure 6 shows the results of the first unit
shown in Figure 3. For this unit, only a few eigenvalues were clearly greater
than zero, and others were close to zero. The eigenvectors with the largest
eigenvalues corresponded to the directions in image space that were most
expanded, which were image features that maximally excited the unit.
These features were in agreement with the orientations of the first-layer
bases that had the strongest connections to the unit (see Figure 3). But the
rest of the eigenvectors did not show any meaningful patterns. This was the
case for most other second-layer units. In contrast to Karklin and Lewicki
(2009), no eigenvectors for any second-layer unit were found to represent
inhibitory image features or other types of complex features.

5 Discussion

We proposed modeling the outer product of image intensities. It was as-
sumed that the distribution of this quantity was gaussian, where the mean
was parameterized with latent variables and the covariance matrix was a
constant. The latent variables were regularized with sparsity. A two-layer
model was presented. Quantitative comparisons with physiological data
showed that the first-layer bases resembled receptive fields of V1 simple
cells, and the second-layer units exhibited orientation selectivity and phase-
invariance properties, similar to V1 complex cells.

Our model differs from the hierarchical models (Hyvärinen et al., 2001;
Hyvärinen & Hoyer, 2000; Karklin & Lewicki, 2005; Schwartz, Sejnowski, &
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Dayan, 2006; Köster & Hyvärinen, 2010) by the location of nonlinearity.
In these models, nonlinearity is always in the second layer, while in our
model, it is in the first layer. By capturing some nonlinear statistical regu-
larities in images, our model produced similar results to these models (e.g.,
orientation tuning and phase invariance properties, see Figures 3 and 4).

In some other hierarchical models (Karklin & Lewicki, 2009; Ranzato &
Hinton, 2010; Coates et al., 2011), nonlinearity is present in the first layer, and
the covariance of image intensities is modeled. In fact, the outer product
of image intensities is closely related to the covariance of the gaussian
distribution of image intensities assumed in Karklin and Lewicki (2009).
Therefore, the proposed model, though it does not explicitly address the
problem of generalization, describes the statistics of input images well.

An advantage of the proposed model over the model proposed by
Karklin and Lewicki (2009) is that it does not require the matrix expo-
nential operation. This operation in their model is to ensure the posi-
tive semidefiniteness of the covariance matrix. However, it is intuitively
not straightforward to incorporate such a complicated function in a bio-
logical system. In addition, this operation is computationally expensive.
We have experienced difficulties with this model because the learning algo-
rithm was prone to instability. Careful tuning of learning rates seems to be
necessary, but it was time-consuming from our experience. The experiments
showed that our model was much more robust during learning, suggesting
that it may play a more important role in many applications.

The outer product model, though it reproduced some properties of V1
neurons including orientation tuning, phase invariance, and a masking ef-
fect (see Figure 4), failed to reproduce the surround suppression effect of
some V1 neurons (Bonds, 1989). This last effect was successfully repro-
duced by the covariance model (Karklin & Lewicki, 2009). In addition, the
eigenvalue-eigenvector decomposition analysis revealed that the learned
second-layer units of the outer product model were not as diverse of those
presented in Karklin and Lewicki (2009). This might be due to the lack of
matrix exponential operation and inhibitory units in the second layer of the
proposed model.

Appendix A: Standardizing the Inference Problem

We show that problems 3.1 and 3.2 are equivalent. Notice that ||A||2F =
trace(ATA) and trace(ABC) = trace(BCA); the objective function in prob-
lem 3.1 can be expanded as follows:

f1 = 1
2
‖xxT − B diag(Wy)BT‖2

F + γ
∑

j

y j

= 1
2

trace((xxT − B diag(Wy)BT )T (xxT − B diag(Wy)BT )) + γ
∑

j

y j
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= 1
2

trace(B diag(Wy)BTB diag(Wy)BT ) − trace(xxTB diag(Wy)BT )

+ γ
∑

j

y j + const(y)

= 1
2

trace(BTB diag(Wy)BTB diag(Wy)) − trace(BTxxTB diag(Wy))

+ γ 1Ty + const(y),

where const(y) denotes a term independent of y. Let T = BTB diag(Wy),
which follows

tik =
∑

j

wk jy jb
T
i bk,

where tik denotes an element of T . We then have

f1 = 1
2

∑
i

(∑
k

tiktki

)
+

∑
i

⎛
⎝∑

j

wi jy j(B
Tx)i(B

Tx)i

⎞
⎠+ γ 1Ty + const(y)

= 1
2

∑
j1, j2

y j1
y j2

⎛
⎝∑

i,k

wk j1
wk j2

(
bT

i bk

)2

⎞
⎠

+
∑

j

y j

(∑
i

wi j

(
(BTx) ◦ (BTx)

)
i

)
+ γ 1Ty + const(y)

= 1
2

yT (
W T (

(BTB) ◦ (BTB)
)

W
)

y + (
W T (

(BTx) ◦ (BTx)
) + γ 1

)T
y

+ const(y).

Therefore, problems 3.1 and 3.2 are equivalent.

Appendix B: Proof of Theorem 1

The proof of theorem 1 follows Lee et al. (2007). For better readability, we say
that y and ŷ are sign consistent if for each dimension i, sign(yi) × sign(ŷi) ≥
0, and denote f ′

1 = 1
2 yTAy + bTy, and f̂ ′

1 = 1
2 ŷTÂŷ + b̂

T
ŷ, where ·̂ is the

submatrix or subvector corresponding to the active set.

Lemma 1. If the solution is feasible (i.e., nonnegative), the optimality condi-
tions (steps 4a and 4b) ensure that the algorithm finds the optimal solution of the
quadratic programming problem.
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Proof. The Karush-Kuhn-Tucker (KKT) conditions for problem 3.2 are

yT∇ f ′
1(y) = 0, y ≥ 0, ∇ f ′

1(y) ≥ 0.

Note that problem 3.2 is a convex optimization problem. Therefore, the KKT
conditions are both necessary and sufficient for the optimality. It is clear that
conditions a and b in algorithm 1 are equivalent to the above conditions.

Lemma 2. Each feature-sign step (step 3) guarantees strict improvement of the
objective function f ′

1 without violating the nonnegativity constraints.

Proof. Evidently for any y and its corresponding subvector given any
configuration of the active set, the following functions take equal values,

f ′
1(y) ≡ f̂ ′

1(ŷ),

as the values apart from the submatrices and subvectors Â, b̂, and ŷ have
no effect on the function value. Therefore, it is intuitive that if ŷnew is sign
consistent with ŷ (i.e., ŷnew ≥ 0), f ′

1(ynew) ≤ f ′
1(y) since ŷnew is the optimal

solution for the quadratic programming problem minŷ f̂ ′
1(ŷ).

If ŷnew is not sign consistent with y, a line search must be performed
to update ŷ while preserving the nonnegativity constraint, as the L1 norm
can be simplified to a first-order term only when nonnegativity is satisfied.
Assume that the line search step is α (0 ≤ α < 1). Then from the convexity
of the quadratic programming problem, the new point ŷ′ = ŷ + α(ŷnew − ŷ)

satisfies f̂ ′
1(ŷ

′) ≤ α f̂ ′
1(ŷnew) + (1 − α) f̂ ′

1(ŷ) ≤ f̂ ′
1(ŷ), that is, f ′

1(y
′) ≤ f ′

1(y).
In fact, it is evident that neither equality holds unless the optimal solution

has been achieved. Therefore, each feature-sign step strictly improves the
objective function while preserving nonnegativity.

Given the above lemmas, the proof of theorem 1 is straightforward.

Proof of Theorem 1. Since the sign configurations of y are finite, following
lemma 2, the algorithm cannot repeat a previous configuration as the objec-
tive function is strictly decreasing. Therefore, the algorithm must converge
within a finite number of iterations, and lemma 1 ensures the optimality of
such solutions.
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