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Predicting Eye Fixations With Higher-Level
Visual Features

Ming Liang, Student Member, IEEE, and Xiaolin Hu, Senior Member, IEEE

Abstract— Saliency map and object map are the two
contrasting hypotheses for the mechanisms utilized by the visual
system to guide eye fixations when humans are freely viewing
natural images. Most computational studies define saliency as
outliers of distributions of low-level features, and propose saliency
as an important factor for predicting eye fixations. Psychophys-
ical studies, however, suggest that high-level objects predict eye
fixations more accurately and the early saliency only has a minor
effect. But this view has been challenged by a study which shows
opposite results, suggesting that the role of object-level features
needs further investigations. In addition, little is known about
the role of intermediate features between the low-level and the
object-level features. In this paper, we construct two models
based on mid-level and object-level features, respectively, and
compare their performances against those based on low-level
features. Quantitative evaluation on three benchmark natural
image fixation data sets demonstrates that the mid-level model
outperforms the state-of-the-art low-level models by a significant
margin and the object-level model is inferior to most low-level
models. Quantitative evaluation on a video fixation data set
demonstrates that both the mid-level and object-level models
outperform the state-of-the-art low-level models, and the latter
performs better under three out of four standard metrics. When
combined together the two proposed models achieve even higher
performance. However, incorporating the best low-level model
yields negligible improvements on all of the data sets. Taken
together, these results indicate that higher level features may be
more effective than low-level features for predicting eye fixations
on natural images in the free viewing condition.

Index Terms— Attention, saliency, feature, visual hierarchy.

I. INTRODUCTION

WHEN our eyes are viewing natural scenes, the fixations
are directed by attention to facilitate the processing of

Manuscript received July 7, 2014; revised November 20, 2014; accepted
January 8, 2015. Date of publication January 23, 2015; date of current version
February 11, 2015. This work was supported in part by the National Basic
Research Program (973 Program) of China under Grant 2013CB329403,
in part by the National Natural Science Foundation of China under Grant
61273023, Grant 91120011, Grant 61332007, and Grant 91420201, and in part
by the Tsinghua University Initiative Scientific Research Program under Grant
20121088071. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Dimitrios Tzovaras.

M. Liang is with the State Key Laboratory of Intelligent Technology
and Systems, Tsinghua National Laboratory for Information Science and
Technology, and also with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China (e-mail:
liangm07@mails.tsinghua.edu.cn).

X. Hu is with the State Key Laboratory of Intelligent Technology and
Systems, Tsinghua National Laboratory for Information Science and Tech-
nology, the Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China, and also with the Center for Brain-Inspired
Computing Research, Tsinghua University, Beijing 100084, China (e-mail:
xlhu@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2395713

visual information. Attention can be driven by both bottom-up
stimulus properties and top-down task dependent factors,
which has received extensive investigations from psychology
and neuroscience. Besides the direction of information flow,
another important issue about attention is the representation of
inputs, i.e. visual features, based on which attentional signals
are computed. It is still unresolved what levels of features are
involved in attention computation, and to what extent each
of them can guide the attention, respectively. Two contrasting
hypotheses on attention under the condition of free viewing
are (low-level) saliency map and (high-level) object-based
attention, which are briefly reviewed in what follows.

Most computational models follow the saliency map hypoth-
esis [1], which defines saliency as outliers of the distribution
of visual features on the image. Hence, the locations with
distinct or rare features are assigned high saliency values
and supposed to strongly attract attention. Consistent with
psychological findings [2], [3], saliency models mostly operate
on low-level feature channels [1], [4]–[6], such as orienta-
tion, color and intensity. These features resemble the stimuli
to which neurons in early visual areas are sensitive.
Psychophysical [7] and physiological [8] evidence suggests
that the saliency map might be represented by neural
responses in V1.

In contrast, the object-based hypothesis claims that objects
may better predict fixations and directly guide atten-
tion [9], [10]. The major argument is that although saliency
is shown to be correlated with fixations, it has only an
indirect effect through the salient recognized objects. In a
psychophysical experiment [9], an object map was obtained
by weighting each pixel by its overlap counts with the recalled
objects by human subjects. It was compared with the saliency
map computed by Itti et al.’s model [1] in terms of the
ability to predict eye fixations when the subjects are freely
viewing daily life images. The object map outperformed the
saliency map, and when the two maps were combined the
performance was not significantly better than that of the object
map alone. However, recently an analysis of the same data
yielded conflicting results [11]. After appropriately addressing
the spatial bias intrinsic in fixations, the object map did
not perform better than Itti et al.’s model. In addition, the
object map was outperformed by the state-of-the-art saliency
models.

The visual system has a hierarchical organization, and it
creates increasingly complex and invariant multi-level feature
representations [12]–[14]. Previous experiments have indicated
multiple candidate sites on cortex for attention computation
including V1 [7], [8] and V4 [15], [16], which process
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different levels of features. A natural question is to what
extent each feature level contributes to attention. In this
study, we explored this issue by constructing two attention
models based on higher-level visual features (higher than the
low-level features used in typical saliency models [1]–[6]).
The motivations for proposing these models are described as
follows.

Low-level features and object-level features (throughout the
paper we use “object-level” and “high-level” interchangeably)
are two extremes of the hierarchical representations of
visual information [17]. Neither hypothesis discussed above
considers the effect of intermediate feature representations on
attention, which we call mid-level features in this paper. For
computational implementation of mid-level features, we follow
the common definition in computer vision, that is, features
built on low-level ones, having more semantic information
but without direct description on high-level image structures.
Unlike the simple low-level features which are universal
building elements for all images, mid-level features are
suggested to be more informative for object recognition [18].
This advantage attributes to their stronger ability for discrimi-
nating visual patterns [19], including selectivity to perceptually
different patterns and invariance to perceptually irrelevant vari-
ations. Saliency by nature measures the differences between
visual patterns. We hypothesize that the differences measured
on mid-level features may better match the human perception
of saliency than low-level features on natural images. A fea-
ture selection study [20] for saliency prediction supports this
hypothesis but a systematic investigation is lacked. To further
validate this hypothesis, we propose to use some mid-level
features effective for object recognition to predict saliency
in the conventional bottom-up saliency map framework. One
should be aware that the saliency map is originally defined
with respect to low-level features, but this notion is extended
to mid-level features in this paper.

The object map in [9] was obtained based on the behavioral
data of human subjects. There do exist some computational
models that employ object-level features. A deep learning
model [22] has been trained to detect saliency where the
top layer features were used. These features were shown to
correspond to semantic concepts. Another approach is to train
a weighted sum of object detectors [23]–[25], but these detec-
tors are not necessarily obtained in a hierarchical fashion. Our
second model adopts this approach, with the motivation that
there may be much space for improvement by incorporating
more objects. Specifically, we train an object-level attention
model using the high-level object bank (OB) [26] feature,
which has 177 kinds of object detectors.

We did not attempt to devise new low-level saliency models
by considering that through years of efforts many excellent
models of this kind have been developed. These models were
used as baselines for evaluating the two proposed higher-
level models. We compared their performances in natural
viewing conditions, and evaluated the roles of different feature
levels.

The remaining content is organized as follows. Section II
presents some related works. Section III and section IV
describe the mid-level and high-level models, respectively.

Section V presents the experimental results. Finally, section VI
gives the discussion.

II. RELATED WORK

Based on the feature integration theory [2]
Koch and Ullman [27] first proposed the concept of saliency
map, which was implemented by Itti et al. in a biologically
plausible way [1]. Since then, many models have been
proposed, and most of them are bottom-up models which do
not need supervised training. They typically work in three
steps. First, a set of feature maps over several channels are
extracted from each location of the image. Second, saliency
signals are activated on each feature map according to certain
measures. Third, these signals are combined to form a master
saliency map.

For the first step, low-level features are used by almost
all saliency models. Gabor-filtered orientation, opponent color
and intensity are used by Itti et al.’s model [1]. Similar features
are used by GBVS [4] and AWS [6]. ICA bases which resem-
ble the Gabor filters are used by AIM [5] and SUN [28]. Raw
image patches are used in context aware saliency (CA) [29]
and image manipulation saliency [30]. For models operat-
ing in the frequency domain [31], [32], the features are
Fourier or discrete cosine transformation coefficients. Besides
these linear features nonlinear features have also been used
by some saliency models. Local steering kernels (LSKs)
are used by SDSR [33]. The covariance matrix of a set
of features, such as orientation, color, intensity, is used
by covariance saliency [34]. In a recent feature selection
study [20], some features including histograms of oriented
gradients (HOG) [35] and histograms of colors are shown
to be complementary to the low-level features for saliency
prediction.

For the second step, many approaches have been proposed
which operate locally or globally on the feature maps. For local
measures, the difference between two locations is weighted
by their spatial distance. In Itti et al.’s model the consipicuity
in each feature channel is calculated as the center surround
contrast. GBVS [4] treats the image as a graph and the weight
between two nodes is determined by their dissimilarity and
distance. The saliency is then the equilibrium distribution
of the Markov chain defined over the graph. To measure
a multi-scale saliency, CAS [29] compares an image patch
with other patches in both the same scale and neighboring
scales. For global measures, the interaction between locations
are independent of their spatial distance. AIM [5] employs
an information theoretical approach and defines its saliency
as the self-information. Inspired by the properties of neural
responses, AWS [6] decorrelates the multi-scale feature vectors
with PCA and uses their normalized amplitude to repre-
sent saliency. Another kind of global saliency measure is
derived in the frequency domain, such as spectral residue
saliency (SR) [31] and image signature (IS) [32].

For the third step, following the classical model
of Itti et al. [1] many models [4]–[6] simply sum up the
saliency on all feature maps. The weights are usually manually
assigned for each feature channel. Besides linear combination,
multiplication [34] and max [36] operations have also been
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used to integrate saliency information. Recently, a hierarchical
structure was proposed to generate saliency maps at different
scales and a Markovian method was used to integrate the
saliency maps sequentially [37].

Different from the standard saliency framework, some
attention models skip the second step. They extract and
combine higher-level features (sometimes together with
low-level saliency) to yield the attention map. Object-level
features are employed by some models, in the form of object
detectors [22], [24], [25]. These object-level features are not
used for activating saliency, but are linearly combined in
a supervised fashion to predict fixations. Recently, a set of
neural networks with different number of layers were trained
independently [38], and their top layer features were used to
predict fixations. Then the networks were linearly combined.
Some features in the model can be regarded as mid-level and
some can be regarded as high-level, although they come from
different networks.

This paper focuses on the first step, more specifically, the
roles of mid-level and high-level visual features in attention
modeling.

III. MID-LEVEL ATTENTION MODEL

In this section, we describe the mid-level model. It has two
feature channels, shape and color. The overall architecture is
similar to traditional saliency models and the main difference
lies in the extracted features, as described below.

A. Shape Channel

In image classification, the bag of words (BoW) [39] frame-
work based on SIFT [21] descriptors is often used to obtain
a mid-level visual representation. BoW assign the extracted
descriptors to pre-trained visual words which correspond to
typical local image structures. By pooling the visual words
over the entire image, a histogram is obtained as the final
representation. We use a modified BoW representation to
obtain the shape features, in which a histogram is pooled from
each local region.

The process of extracting a SIFT descriptor is briefly
described as follows. Details can be found in [21]. First, the
gradient orientation and magnitude at each sample point within
a patch are computed. This step is similar to the Gabor filtering
step in Itti et al.’s model [1]. Second, the patch is divided
into 16 bins and the gradients in each bin are pooled into a
histogram with 8 orientations. This operation introduces
certain position invariance, which is in principle similar to
the tuning property of complex cells. For computing the
histogram, each gradient is weighted by a Gaussian window
located at the descriptor center to avoid abrupt changes caused
by small position shift, and the gradient is smoothly distributed
to adjacent orientations. Third, the 16 histograms are concate-
nated to a vector of 128 dimensions. To be robust to illumi-
nation changes, thresholding and normalization operations are
applied to the vector to yield the final descriptor. Figure 1
shows a SIFT descriptor located at the center of the big red
square patch, where the 16 small squares are bins.

Fig. 1. A SIFT descriptor example. Each small red square is a bin, whose
gradients are pooled into a histogram. The red lines in each bin denote the
orientation information with line length denoting the magnitude. Best viewed
in color.

Fig. 2. Illustration of the pooling step in the shape channel. Two scales are
shown.

A dictionary of visual words is trained for the BoW
representation. A large set of SIFT descriptors are randomly
extracted from an image dataset. The K-means clustering
algorithm is then applied to the descriptors to learn K
centroids of words c j ( j = 1, . . . , K ), where each word c j

is a 128D vector. The dictionary is denoted by a matrix
C = (c1, c2, . . . , cK ).

For an input image, SIFT descriptors {di } are densely
extracted from locations {i}. Each di is encoded by
C and represented by ri via locality-constrained linear
coding (LLC) [40], which amounts to solving the following
optimization problem:

min
r̃i

||C̃i r̃i − di ||22 (1)

with the constraint 1T r̃i = 1. Here C̃i denotes the local
dictionary formed by K̃ nearest neighbors (measured by
Euclidean distance) of di among the K words. K̃ < 128 is
usually small. The local coordinate r̃i is then converted to ri by
padding zeros in ri , which correspond to the K − K̃ unused
visual words. LLC leads to a sparse code by using a small
number of neighboring visual words for the reconstruction of
each descriptor.

The image is then divided into non-overlapping grids {gi},
where gi denotes the grid cell centered at i . The visual words
within each grid cell are max pooled to obtain a local region
feature vector vi :

vi ( j) = max
l∈gi

rl( j) (2)

where vi ( j) is the j th feature of vi and rl( j) is the j th element
of rl (see Figure 2).

The procedure described above deals with a single scale.
To incorporate multi-scale information, several SIFT bin sizes
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are used. A single dictionary is trained for all scales. The SIFT
extraction, LLC coding and max pooling steps are performed
for each scale, followed by an extra pooling step over the
scales (see Figure 2):

fi ( j) = max
b

vb
i ( j) (3)

where b denotes the bin size.
To activate saliency, AWS [6] uses an approach by

first removing the correlation between different features
fi ( j) and fi (k) and then normalizing each feature over the
entire image. This approach can be adopted here. As LLC has
led to a sparse code, in which the correlation between different
features is largely removed, we directly normalize fi ( j) to its
standard score

f i ( j) = ( fi ( j) − μ j )/σ j (4)

where μ j and σ j denote the mean and standard deviation
of fi ( j) at all locations, respectively.

The saliency value at location i is defined as

sshape
i = ||f i ||22 (5)

where f i = ( f i (1), f i (2), . . . , f i (K ))T . The saliency map is

then Sshape = {s shape
i }.

B. Color Channel

Itti et al.’s model [1] uses opponent colors to encode color
information, which correspond to the tuning properties of the
V1 and V2 neurons. In the V4 area the neurons are tuned
to hue while invariant to luminance changes [41]. We use
color name features [42] to represent color information, as
it is similar to higher-level color encoding in the cortex.

Color names map the raw RGB value to a 11D vector, each
element denoting the probability of this pixel belonging to
a certain basic color. The 11 basic color terms are defined
according to their consistent use in English language and
consensus among most speakers [43], including black, blue,
brown, grey, green, orange, pink, purple, red, white and yellow.
This mapping is learned from images on Internet [42]. For
example, the red color training samples are obtained by typing
‘red’ and ‘color’ on Google, and cropping the red part of
the returned images. Thus the training samples have some
invariance to photometric changes.

The extraction of color name features involves two
steps [44]. First, the RGB value of each pixel i is mapped
to a 11D vector cni . Second, the image is divided into non-
overlapping squared bins {Pi } with the same size, with Pi

centered at i . The color name vector CNi is obtained by
averaging all cnl within Pi :

CNi =
∑

l∈Pi

cnl/N (6)

where N denotes the number of pixels in each bin.
Inspired by SIFT, we concatenate the vectors of

4 × 4 neighboring bins to yield a 176D color feature
fi = ( fi (1), fi (2), . . . , fi (176))T , where i denotes the center
location of the 16 bins. This step enables the feature to
represent more complex patterns.

To activate saliency, we adopt the same approach as that
used in AWS [6]. First, principal component analysis (PCA)
is used to decorrelate the color features

xi = UT fi (7)

where the columns of U denote the principal components of
the feature set over the input image. Then the saliency map
Scolor = {scolor

i } is computed based on the standard score of xi

x i ( j) = (xi ( j) − μ j )/σ j (8)

where μ j and σ j denote the mean and standard deviation
of xi ( j) at all locations, respectively.

scolor
i = ||xi ||22 (9)

where xi = (xi (1), xi (2), . . . , xi (176))T .
We tried the LLC technique to encode the color name

features as in the shape channel but the result was not as
good as that of PCA. A possible reason is that the distribution
of color visual words is not sparse.

So far we have described the generation of color saliency
map in a single scale. The extension to multiple scales is
straightforward. We simply vary the bin size in equation (6)
and repeat the feature extraction and the saliency activation
steps, then sum up the resulting maps.

C. Channels Combination

The master map Smid = {smid
i } is obtained by normalizing

and summing up Sshape and Scolor :

Smid = G ∗ (S
shape + S

color
) (10)

where S
shape

and S
color

are normalized saliency maps with
zero mean and unit standard deviation over the whole dataset.
G is a Gaussian filter with its standard deviation being
0.04 times the longer dimension of Smid , and ∗ denotes
convolution. This setting is similar to that in many previous
models [4], [32].

For convenience, this mid-level model is called histogram-
based saliency (HBS) in what follows, as both shape and color
channels involve histogram-based features.

IV. OBJECT-LEVEL ATTENTION MODEL

A high-level object model is trained based on the object
bank (OB) [26] feature. OB uses the responses of 177 object
detectors [45], [46] to describe an image. These detectors
operates in 12 scales. The detector response at location i and
scale b is denoted as rb

i , which is a 177D vector. The training
process is described below.

First, the multi-scale responses at each location i are max
pooled over scales to obtain the feature map

fi ( j) = max
b

rb
i ( j) (11)

where fi ( j) and rb
i ( j) denote the j th elements of fi and rb

i ,
respectively.

Second, the attention map S = {si } is computed as

si = wT fi (12)
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Fig. 3. Simple stimuli with the target pops out in orientation (row 1, 2), color (row 3, 4), intensity contrast (row 5, 6) and size (row 7, 8). From left to right,
the columns denote the original image, saliency maps output by HBS, Itti et al.’s model, AWS, GBVS and IS. Best viewed in color.

where each element of w denotes the weight reflecting
the priority of each object category during free viewing.
To train w, an support vector machine (SVM) based
approach [24] is adopted. Images in a natural viewing dataset
are split into a training set and a test set. The smoothed fixation
maps are used as the ground truth. A set of pixels are randomly
picked from the training images, with positive samples having
high saliency and labels 1 while negative samples having low
saliency and labels −1. For each sample the corresponding
feature vector f is extracted. The features and labels are input
into a linear SVM classifier to obtain w, which are then used in
the test phase. Because OB contains a large variety of generic
objects and many of them may have little correlation with
the fixation prediction task, l1-norm SVM is used to select
important features:

min
w

‖w‖1 + c
∑

i

max (0, 1 − yi wT fi )
2

(13)

where c is a hyper-parameter. The l1-norm penalty can drive
the weights of useless features to zero [47].

For convenience, this attention model is called OB in what
follows.

V. EXPERIMENTS

A. Parameter Settings
The VLFeat [48] library was used to extract SIFT descrip-

tors. Four bin sizes {4, 6, 8, 10} were used for both the shape
and color channels, the same as the default settings for PHOW
descriptors in VLFeat. To inhibit the responses in regions
with very low contrast, any SIFT descriptor with its l2-norm
smaller than 20/b was thresholded to be zero where b is
the side length of the bin. This is because SIFT descriptors
with larger bins tend to have lower contrast. The visual word
number K was 1024 (larger K has led to similar or slightly
better results on different datasets but significantly increased
the computing time). We found that the performance of the
models were not sensitive with K . Five nearest neighbors were
used in LLC (equation (1)), which is the default setting in the
reference [40].

In equation (13) c was set to 0.01. 10-fold cross validation
over the dataset was carried out. In each trial, the weights for
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the images in the test fold were learned on the training folds.
After cross validation, every image was assigned a set of test
weights.

B. Synthetic Patterns

To gain some heuristic insight on the difference between the
mid-level and low-level features, we qualitatively evaluated
HBS over 26 synthetic images, which were collected from
the supplement materials of [49]. The dictionary in the shape
channel was trained from these images. We did not test
the object model here because these images did not contain
any high-level objects. The images were classified into
three categories. Several typical low-level models including
Itti et al.’s model [1], AWS [6], GBVS [4] and IS [32]
were used for comparison. The results are shown
in Figure 3, 4 and 5.

The first category contains simple stimuli in which the
targets pop out in a basic feature dimension, such as orienta-
tion, color, intensity and size (see Figure 3). Stimuli 2, 4, and 6
have more inhomogeneous background than 1, 3 and 5. HBS
showed visually satisfactory results consistently for all stimuli.
For stimuli 4, only HBS and AWS found the target. For
stimulus 5, only HBS and GBVS detected the highest saliency
at the single white spot.

The second category contains more complex stimuli
(see Figure 4). HBS successfully detected all targets but other
models did not perform so well. For instance, in stimuli 6 the
target is a regular pentagon and the distractors are all circles.
All low-level models failed to find this target.

The third category contains three pairs of asymmetric
stimuli (see Figure 5). HBS again successfully detected
all targets. Other models generally did not perform well,
especially for the last 4 stimuli.

These results demonstrate the superiority of HBS over the
low-level models in detecting distinct patterns. This superiority
attributes to the stronger representation power of mid-level
features, which enables better discrimination of distinctness
and suppression of irrelevant variations.

C. Free Viewing Fixations on Natural Images
1) Datasets: Three public human fixation datasets were

used in our experiments. The first is the Toronto dataset [5].
It consists of 120 indoor and outdoor images with
681 × 511 pixels. Each image has a resolution of 681 × 511
and was viewed by 20 subjects for 4 seconds. This dataset
contains less scene categories and many images have no par-
ticular objects of interest. The second is the MIT dataset [24].
It consists of 1003 natural indoor and outdoor images. The
longest image dimension is 1024 pixels and the other dimen-
sion ranges from 405 to 1024 pixels. Each image was viewed
by 15 subjects for 3 seconds. The images contains many
meaningful daily life objects such as faces and texts, which
rarely appears in the other two datasets. The third is the
Kootstra dataset [50]. It consists of 100 outdoor images, which
are separated into five categories, including animals, automan,
flowers, buildings and nature. Each image has a resolution
of 1024 × 768 and was viewed by 31 subjects for 5 seconds.

This dataset is the most difficult one as the fixation consistency
among subjects is the lowest.

For each dataset, all images were used to train the dictionary
of SIFT visual words. 1000 SIFT descriptors were extracted
for each bin size and each image.

2) Evaluation Metrics: Several metrics have been proposed
in the literature to quantify the ability of saliency models
for predicting human fixations. Three of them are adopted
here: Area Under the ROC Curve (AUC) [51], Normalized
Scanpath Saliency (NSS) [52] and Linear Correlation
Coefficient (CC) [53]. AUC is the most widely used metric
in saliency model evaluations. Given a threshold th, pixels
with saliency value higher than th are classified as fixated
(positive samples) while others as non-fixated (negative
samples). Using human fixation data as the ground truth,
for each th we calculate a true positive rate TPR and a
false positive rate FPR, which can be represented by a point
in the 2D space. By varying th a curve can be obtained,
which is called the ROC curve. AUC measures how well a
saliency map predicts the human fixation data on an image.
A perfect prediction corresponds to an AUC of 1 and a random
guess corresponds to an AUC of 0.5 (chance level). NSS is
the average value at human fixation locations of a saliency
map, which has been normalized to have zero mean and unit
variance. A higher NSS denotes a better performance, and
NSS = 0 corresponds to a random guess. CC is defined as

cov(F,S)√
var(F)var(S)

, which measures the linear relationship between

the fixation map F and a saliency map S. CC = 1 denotes
a perfect positive linear relationship and CC = 0 denotes no
linear relationship.

Unfortunately, all of these three metrics suffer from the
so-called center bias [54]. Center bias describes the tendency
of humans to watch the center of an image regardless of its
content, due to the photographer’s bias and subjects’ viewing
strategy [55]. The fixation data of all public datasets shows a
high center bias so that a trivial Gaussian center model can
achieve high evaluation scores [49]. Some saliency models
contain implicit [4] or explicit [24] center prior while other
models do not, making the direct comparison unfair.

There are two approaches to deal with this problem. First,
use an evaluation metric which is free from the center bias.
Shuffled AUC [28] is such a metric. In shuffled AUC, the
negative samples are all fixation points across the dataset,
except those in the current image. In this way the positive
samples and negative samples have the same spatial distribu-
tion, and the influence of center bias is eliminated.

Second, add a center prior to each model and evaluate
the models in the usual way. In fact, metrics other than
shuffled AUC can provide supplementary information about
the models. In our experiments, a center map was combined
with the saliency map or attention map obtained by any model
as follows:

Sc = w1(center map) + w2(model map) (14)

where w1 and w2 denote combination weights. For fair
comparison, the l2-norm SVM was used to train the optimal
weights for each model. The combination was performed
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Fig. 4. Complex stimuli. From left to right, the columns denote the original image, saliency maps output by HBS, Itti et al.’s model, AWS, GBVS and IS.
Best viewed in color.

by a 10-fold cross validation. In each fold, the average of
smoothed fixation maps of the training images was used as
the center model.

Therefore, for each model, besides the shuffled AUC, we
also report AUC, NSS and CC for the combination of the
model and the center model.
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Fig. 5. Asymmetry stimuli. From left to right, the columns denote the original image, saliency maps output by HBS, Itti’s model, AWS, GBVS and IS.
Best viewed in color.

TABLE I

EVALUATION RESULTS OVER THE TORONTO DATASET1

3) Models for Comparison: Our models were compared
against 11 low-level saliency models. All of their results were
obtained with the original implementations downloaded from
the authors’ websites. For Itti et al.’s model, the version
from the GBVS package [4] was used. For SDSR [33] we
used the global saliency measure which performed better in
our experiments. For covariance saliency model (COV) [34],
we used the version parametrized by SigmaPoints which
performed better in our experiments.

A recent model eDN [38] was also compared, which
integrates multi-level features from neural networks in a
supervised manner. We calculated the scores on the MIT and
Toronto datasets based on the saliency maps provided by

the authors. The model has an explicit center prior, which has
suppressed the contribution of features and led to very low
shuffled AUC scores. To be fair we only report its AUC, NSS
and CC scores. In addition, the saliency maps were combined
with our center model according to equation (14), which has
improved the scores.

4) Results: Tables I, II and III show the comparison results
over the Toronto, MIT and Kootstra datasets, respectively. The
average scores over all images and their standard error of the
mean (SEM) are reported. AWS [6] performed the best among

1The bold numbers indicate higher than or equal to the best scores of all
low-level models.
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TABLE II

EVALUATION RESULTS OVER THE MIT DATASET

TABLE III

EVALUATION RESULTS OVER THE KOOTSTRA DATASET

low-level saliency models under all four metrics, and was
used as a baseline. Another baseline was the Gaussian center
model, which had a chance level performance for shuffled
AUC and set a lower bound for AUC, NSS and CC. Note
that the reported scores in the tables may not be exactly the
same as, though very close to, those in other papers due
to some differences in implementation details. For example,
there may be differences in the point density of ROC curves,
smoothed fixation map used in CC metric, or the center models
accounting for the center bias. But these factors have a similar
influence on all models and the relative ranks may not change.

HBS outperformed the other models under all metrics over
the three datasets, which indicates that the mid-level features
better predict the fixations than low-level features. On the
other hand, the high-level OB model was surpassed by most
low-level models over the Toronto and Kootstra datasets. This
is possibly due to the lack of meaningful objects in images of
these two datasets. This hypothesis is partly supported by the
fact that OB achieved relatively better performance over the
MIT dataset, which contains many daily life objects. OB had
similar AUC score with AWS, but was outperformed by AWS
under the other three metrics. When compared with some other
low-level models such as SDSR and AIM, OB had competi-
tive performance. It achieved higher shuffled AUC and AUC

but lower NSS and CC. These results indicate that objects
do not have stronger prediction power than low-level and
mid-level features; this is true at least for the proposed
OB model.

With three kinds of models characterized by low-level,
mid-level and high-level features, an interesting question
arises: if we combine the models together, what is the
performance of the resulting model? We then linearly com-
bined AWS (because it performed best among low-level
models over all datasets in our experiments) and the proposed
HBS and OB models. The linear weights were obtained using
the same approach as that for combining the center map and
model map (see [24]). Over the Toronto and Kootstra datasets
where the OB model was less effective, the combined model
exhibited very close performance to HBS under any metric
(see Tables I and III). Over the MIT dataset, the combined
model showed clear advantages over HBS under the shuffled
AUC and AUC metrics (see Table II).

One may wonder how much AWS has contributed to the
overall performance in the combined model. We then tested the
combination without AWS. The resulting model showed only
negligible difference from that including AWS, suggesting that
the higher-level features are enough for this prediction task
(see Tables I, II and III). In comparison with eDN which
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Fig. 6. The scores of HBS shape and color channels, respectively. The scores of AWS and HBS are given for comparison.

TABLE IV

EVALUATION RESULTS OVER THE ASCMN DATASET

combines deep network features of three levels, our model
combined by HBS and OB achieved better results.

HBS has two feature channels, shape and color.
We evaluated them separately to reveal the contribution of
each channel. See Figure 6. The scores of AWS and HBS are
also shown in the figure for comparison. These two channels
exhibited similar performances and were both competitive
to AWS. Interestingly, the color channel alone outperformed
AWS under all metrics.

D. Free Viewing Fixations on Videos

We then evaluated the models for predicting fixations on
videos in the free viewing condition, using the ASCMN
dataset [57]. It consists of 24 videos in five categories: abnor-
mal motion, surveillance, crowd motion, moving camera and
sudden salient motion. The videos were viewed by 13 subjects,
and the gazes were recorded at a video-based frame rate. The
same evaluation metrics were used as before. Although motion
features should be useful for this task, we focused on the
roles of static features only as none of the aforementioned

models contains motion features. The evaluation results are
shown in Table IV. Note that in [57] the fixation heat maps
rather than fixations were used as the ground truth and the
saliency maps were preprocessed before evaluation. Therefore
the scores of some methods such as SUN in [57] are different
from those in Table IV.

Among the low-level models, AWS achieved the highest
shuffled AUC and NSS, while Itti et al.’s model achieved the
highest AUC and CC. HBS again outperformed all low-level
models. OB achieved a shuffled AUC higher than most of the
low-level models except AWS, and the highest scores under
the other three metrics. Notably, OB performed even better
than HBS under AUC, NSS and CC.

Again we combined different models and tested the
performance. The combination of HBS and OB achieved
higher performance than each of them alone. Adding AWS
further improved the performance but the improvement was
negligible.

In summary, the higher-level models performed better
than low-level models in predicting saliency in videos.
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OB exhibited better performance on videos than on static
images, possibly because the salient regions in videos are often
related with semantic objects such as people and cars.

VI. DISCUSSION

In this study we explored the hypothesis that higher-level
features contribute to the guidance of eye fixations in the
free viewing condition. To achieve this goal, we proposed
two attention models HBS and OB, respectively, based on
higher-level features, and analyzed their roles in predicting
eye fixations in free viewing experiments by comparing with
low-level saliency models. In the natural image experiments,
HBS outperformed the state-of-the-art models over all three
benchmark datasets and OB was effective over a semantically
rich dataset, although surpassed by some existing low-level
models. In the video experiment, HBS outperformed all
low-level models and OB achieved the best scores under three
of four evaluation metrics. Furthermore, in both experiments
the combination of the two models achieved even higher
performance. However, incorporating the best low-level model
did not yield noticeable improvement. These results, together
with [20], suggest that, in addition to low-level features studied
extensively in the literature, higher-level features also con-
tribute to the guidance of attention in the absence of explicit
tasks, and this contribution might surpass that of low-level
features.

Attention is classified as bottom-up saliency and top-down
attention, in which the information flow is upstream or
downstream along the visual pathway, respectively. A natural
hypothesis is that all layers along the pathway contribute to the
guidance of attention. Besides the evidence supporting V1’s
role in saliency computation [7], [8], previous studies have
shown that certain mechanisms in higher-level cortex areas are
also involved in attention. The reaction time in visual search
experiments is influenced by the 3D depth perception [58],
which is possibly processed beyond V1. The figure-ground
perception is able to guide the attention [59]. Physiologically
it may correspond to the stereoscopic perception [60] and
border-ownership [61] in higher cortex areas. There are also
physiological evidences [15], [16] that the activity in V4
represents a saliency map. However, previous models on
mapping visual features to eye fixations emphasize low-level
features. This study demonstrates that mid-level and object-
level features are also important, and even more effective than
low-level features, though we are unable to assign them to
specific stages on the visual pathway due to their abstract
modeling procedures.

It has been shown that increased level of features can
improve the object recognition accuracy. For example, SIFT
features are more useful than gradients orientation [21],
BoW features are more useful than SIFT features [40],
and even higher level features are more useful than BoW
features [62]. Our results show a similar trend for attention
from low-level to mid-level features. But we cannot assert this
trend along the hierarchy further. In fact, we cannot claim rela-
tive contributions of mid-level features and high-level features.
One reason is that the proposed mid-level model (HBS) and
high-level model (OB) have exhibited different performances

on different datasets. In fact, over the three static image
datasets HBS performed better and over the video dataset OB
performed better. But a more important reason is that they
compute attention in unsupervised and supervised manners,
respectively, which obscures the contributions of features.

A potential solution to the above problem is to utilize deep
learning models and train all levels of features in an unsu-
pervised or supervised manner. Vig et al. [38] tested different
levels of features for fixation prediction, but these features
were actually top-layer features from different networks. The
model was outperformed by the combination of HBS and OB.
A possible reason is that it did not use saliency activation
but directly mapped the features to fixations in a supervised
manner. Saliency activation might be important for this task,
especially for lower-level features. But the exact reason is
unknown and needs further investigation.
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