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Feature Selection in Supervised Saliency Prediction
Ming Liang, Student Member, IEEE, and Xiaolin Hu, Senior Member, IEEE

Abstract—There is an increasing interest in learning mappings
from features to saliency maps based on human fixation data on
natural images. These models have achieved better results than
most bottom-up (unsupervised) saliency models. However, they
usually use a large set of features trying to account for all possi-
ble saliency-related factors, which increases time cost and leaves
the truly effective features unknown. Through supervised feature
selection, we show that the features used in existing models are
highly redundant. On each of three benchmark datasets consid-
ered in this paper, a small number of features are found to be
good enough for predicting human eye fixations in free viewing
experiments. The resulting model achieves comparable results to
that with all features and outperforms the state-of-the-art models
on these datasets. In addition, both the features selected and the
model trained on any dataset exhibit good performance on the
other two datasets, indicating robustness of the selected features
and models across different datasets. Finally, after training on a
dataset for two different tasks, eye fixation prediction and salient
object detection, the selected features show robustness across the
two tasks. Taken together, these findings suggest that a small set
of features could account for visual saliency.

Index Terms—Eye fixation prediction, feature selection,
saliency map, salient object detection.

I. INTRODUCTION

V ISUAL attention enables human to fast select relevant
information from enormous inputs and facilitate the pro-

cessing of subsequent complex visual tasks. The mechanism of
visual attention has been under extensive investigation in neu-
roscience and psychology. In computer vision, many biologi-
cally inspired and mathematically motivated saliency models
have been proposed to mimic this function, which have played
significant roles in a variety of applications including region of
interest detection [1], robotics [2], image cropping [3], object
recognition [4], and yarn surface evaluation [5].

Typical bottom-up saliency models [6] extract low-level
visual features from the image, and then activate saliency
according to some measures. Because of the direct link
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between visual attention and eye movements, human eye fixa-
tion data in free viewing experiments are often used to evaluate
saliency in images. The process of free viewing is influenced
by many bottom-up stimulus-driven and top-down knowledge-
based factors. To account for this complex process, some
recent models [7], [8] adopted machine learning techniques
to learn the mapping from visual features to fixation data.
These models obtained higher saliency prediction accuracies
than bottom-up approaches, but they used many features all
together. For example, the model of Judd et al. [7] used 33
features covering different processing levels, from low-level
feature contrast to high-level object detectors. Borji [8] incor-
porated two additional saliency maps with different activation
mechanisms as features to improve the prediction accuracy. On
one hand, more features undoubtedly lead to more time cost
in prediction, while saliency computation by nature should
be fast. On the other hand, a large feature set makes it
hard to understand the computational principles underlying
saliency detection, as the roles of effective features may be
blurred by many less useful features. It is unclear if there
exists a smaller set of features which may lead to competitive
prediction results; and if there is, which features should be
selected.

We explored this issue by using feature selection methods
with supervised learning. The goal was to identify a small
set of features, with which the saliency prediction should be
both effective and efficient. To achieve this goal, we con-
structed a large set of candidate features and applied feature
selection methods over the candidate set. We experimented on
three benchmark datasets [7], [9], [10]. The resulting model,
though with much fewer features, achieved comparable results
to that with all features and beat existing supervised models.
Interestingly, we found that swapping the selected features or
trained models on different datasets led to negligible degra-
dation of accuracy. Finally, we tested consistency of features
selected on a dataset [10] for two different tasks: free viewing
fixation prediction and salient object detection. It was found
that swapping the two sets of selected feature did not lead to
much performance degradation in either task.

A. Related Work

Saliency models can be classified into two categories, with
the criterion of the presence of supervision or not.

Bottom-up saliency models do not involve supervised
information. Based on the feature integration theory [11]
Koch and Ullman [12] first postulated the concept of saliency
map, which was then implemented as a computational model
by Itti et al. [6]. In the model, the first step is to extract mul-
tiscale low-level features over several channels. Then a center
surround operation is applied to highlight locations distinct
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from the surroundings. Finally, activated feature maps are nor-
malized and combined together into a master saliency map.
Saliency of a location is measured by its center surround con-
trast. Since then, many other saliency measures have been
proposed, such as self-information in [9], equilibrium distri-
bution of graph-based random walk in [13], decorrelation and
distinctiveness of neural responses in [14], etc. While these
models compute the saliency measures with spatial features,
some other models operate in the frequency domain [15], [16].
To combine saliency in different feature channels, weighted
sum is often adopted with manually assigned weights. Other
combining method is also possible. For example, in a recent
study, a Markov chain was used to integrate saliency maps
derived at different scales of images [17]. Section II-B presents
13 state-of-the-art bottom-up saliency models.

Saliency models in the other category operate in a super-
vised manner by learning a mapping from visual features to
the eye movement data. The features are chosen to account
for as many saliency-related factors as possible, covering
different processing levels. For example, low-level features
include contrast [18] and orientation [19] and high-level fea-
tures include specific object detectors such as face and text
detectors [7], [20], [21]. A somehow different feature refers to
the center prior, which is designed to account for the tendency
of people watching image center [7], [8], [22]. See Section II-B
for details of these features. In addition, the saliency maps
generated by bottom-up saliency models, including those pre-
sented in Section II-B, can be also used as input features to
supervised learning models.

To effectively combine different features, both regression
and classification models can be used. Kienzle et al. [23]
learned a saliency model directly from image pixels (which
can be regarded as the simplest feature) using support vec-
tor machine (SVM). They found that the stimuli activating the
maximum saliency had a center-surround structure, resembling
the receptive fields of neurons in early visual stages of mam-
mals. Zhao and Koch [22] learned a model with low-level
features and face channels using a linear regression method.
They showed that the optimal feature weights varied across
different datasets. Judd et al. [7] proposed to learn saliency
from a large set of 33 image features. In their model, each
pixel location was represented by a 33 dimensional feature
vector. Training data included positive and negative labeled
pixels extracted from smoothed human fixation maps. The lin-
ear SVM was used to train the feature weights. The learned
pixel-wise saliency was simply the weighted sum of fea-
tures. By incorporating the saliency maps produced by other
two bottom-up models [13], [14] as extra features, Borji [8]
compared different learning methods including linear regres-
sion, SVM and AdaBoost. The best performance was achieved
by AdaBoost. The new features enhanced the prediction
power of the learned model, suggesting that the performance
may be further boosted by adding more useful features. So
far Judd et al.’s model and Borji’s model have achieved
state-of-the-art accuracies on several benchmark datasets.

Another line of work on saliency-related supervised models
focuses on salient object detection. Different from eye fixa-
tion prediction, salient object detection uses human annotated

bounding boxes or binary maps as labels. Conditional ran-
dom field (CRF) is a popular tool to learn the contributions
of local features and the interaction between neighboring fea-
tures. Liu et al. [24] used CRF to combine a set of local,
regional and global features. Yang and Yang [25] employed
patch-based sparse features and CRF to train a top-down
saliency model. In their model, the dictionary of sparse words
and CRF were jointly learned with a max-margin approach.
Mai et al. [26] used CRF to aggregate a set of complemen-
tary saliency maps. Because the performance of component
maps varied over different images, they learned an aggregation
CRF model for each image based on its neighboring training
images.

It is reasonable to assume that the places where eyes
are attracted usually contain salient objects and therefore
salient object detection should strongly correlates with fixa-
tion prediction. Saliency models devised for fixation predic-
tion, however, performed poorly on salient object detection
datasets [27], suggesting that this claim is doubtful. A recent
paper [28] argues that this discrepancy might be caused by the
design bias of the salient object detection datasets.

Feature selection [29] is often required for processing noisy
high-dimensional data. It can remove redundant features, speed
up model learning and reduce the chance of over-fitting. In
addition, feature selection enables people to gain better under-
standing of the model in specific domains, by identifying a
few truly effective features. Based on the relationship between
feature evaluation and learning methods, supervised feature
selection methods [30] can be classified into three categories:
filter, wrapper and embedded.

Filter methods evaluate the feature utility by calculat-
ing some general measures between features and labels,
such as correlation [31], mutual information [32] and Fisher
score [33]. These methods behave as a preprocess step for
supervised learning. They are fast to compute and not affected
by the bias of learning method. Wrapper methods [34] use the
prediction accuracy of a predetermined learning model to eval-
uate the utility of features, and the subset of features leading
to the highest accuracy is selected. Wrapper methods usually
performed better than filter methods. However, they are com-
putationally expensive and not suitable for a great number of
candidate features. Embedded methods perform feature selec-
tion and learning simultaneously. The selection is implemented
by applying sparsity constraints to the learning machines, such
as L1-norm SVM [35] (denoted by L1-SVM throughout the
paper) and sparse logistic regression [36]. During learning, the
sparsity regularization term drives the weights of non-relevant
features toward zero. In many cases, embedded methods can
achieve comparable performance with wrapper methods (it
is not the case in this paper; see Section III-B), but are
more efficient.

II. METHODS

A. Learning Procedure

The learning procedure is similar to those in [7] and [8].
See Fig. 1 for illustration. Images are divided into train-
ing groups and testing groups. The ground truth saliency
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Fig. 1. Overall procedure for training and testing. Best viewed in color.

maps are obtained by convolving a Gaussian filter over the
fixation locations of all viewers. For each training image,
np positive pixel locations are randomly picked from the
top 20% salient regions, and nn negative pixel locations are
picked from the bottom 70% salient regions. At each extracted
location, many saliency features are extracted and form a
vector xi. The training vectors xi’s and their corresponding
saliency labels (1 denotes positive and −1 denotes nega-
tive) are then used to train a classifier parameterized by G.
Meanwhile feature selection is carried out to determine which
features are useful. Then the saliency label at each loca-
tion of a testing image with feature vector x is predicted.
In practice, to obtain a continuous saliency map a continu-
ous prediction function f (x|G) instead of a binary function
is used.

B. Existing Candidate Features

To provide a rich pool of candidates, we collect 48 existing
saliency features, among which 33 have been used in a previ-
ous study [7], which can be classified into four categories as
follows.

1) 28 Low-Level Features: Eleven of them are based on
color, including three RGB color channels (R, G, B),
three single channel color probability features (RProb,
GProb, BProb) and five 3-D color probability features
(3DProb1-3DProb5). Fourteen of them are based on
subband pyramid, including thirteen steerable pyramid
subbands (Subband1-Subband13) in different scales and
orientations and a map of Torralba saliency model
(Torralba). Three of them are based on feature contrast,
including color, intensity and orientation contrast map
computed by Itti model (IttiC, IttiI, IttiO).

2) A Middle-Level Feature (Horizon): A horizontal detector
trained from gist features.

3) Three High-Level Features: Face, people, and car detec-
tors, denoted by Face, People, and Car, respectively.

4) A Center Prior (Center): A Gaussian-like function used
to account for the center bias.

The details of these features can be found in [7]. The other
15 features are generated by 13 bottom-up saliency models,
which are briefly described as follows.

1) Graph-Based Visual Saliency [13] (GBVS): In this
model, a fully connected directed graph is first built
on the feature maps. Then a Markov chain is defined

on the graph. Saliency is computed as the equilibrium
distribution of the Markov chain.

2) Adaptive Whitening Saliency [14] (AWS): A whitening
process is applied to the multiscale feature maps to
remove correlations and highlight the distinctive fea-
tures. Saliency is then measured as the Hotelling’s
T-squared statistics.

3) Attention Based on Information Maximization [9]
(AIM): A set of ICA bases are first trained on a nat-
ural image dataset, then the probability distributions of
bases coefficients across the entire image are estimated.
In each location, saliency is computed as the Shannon’s
self-information of the coefficients.

4) Context Aware Saliency [37] (CAS): Raw image patches
are extracted and vectorized in the CIE Lab color space.
Saliency is activated as the patch distinctiveness defined
in both local and global contexts and based on some
visual organization rules. High-level face detector is also
incorporated.

5) Image Manipulation Saliency [38] (IMS): The patch
distinctiveness in the context aware saliency [37] is com-
bined with an object probability map. A coarse saliency
map and a fine saliency map are generated with differ-
ent parameters, which are denoted as IMS-C and IMS-F,
respectively.

6) Dynamic Visual Attention Based on Incremental Coding
Length [39] (ICL): Saliency is activated based on the rar-
ity of sparse features. The rarity is measured by coding
length increments.

7) Spectral Residual Saliency [15] (SRS): The image is
transformed to the frequency domain, and the spectral
residual is extracted, which corresponds to the unex-
pected information in the image. The spectral residual
is then transformed back to the spatial domain and serves
as the saliency map.

8) Image Signature [16] (IS): The image is first trans-
formed to frequency domain using discrete cosine
transform (DCT). Then the amplitude information is
discarded and only the sign of DCT components are pre-
served. The preserved information is transformed back
to the spatial domain and forms the saliency map.

9) Random Center Surround Saliency [40] (RCSS): Center
Surround saliency is computed over rectangular regions
with random sizes and locations. Then they are fused
into the final saliency map.
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10) Frequency Tuned Saliency [1] (FTS): The contrast of
Gaussian blurred image to the mean pixel value is used
to measure saliency.

11) Saliency Detection by Self-Resemblance [41] (SDSR):
Self-resemblance is proposed to activate saliency on
local steering kernel features, measuring the distinct-
ness of a pixel from its surroundings. Both local and
global self-resemblance can be defined, which leads to
two saliency maps SDSR-L and SDSR-G.

12) Saliency Using Natural statistics [42] (SUN): A
Bayesian framework of attention is proposed, combin-
ing both bottom-up saliency and top-down information.
Saliency is computed as the self-information of image
features, whose statistics are obtained from natural
image datasets rather than the processed image.

13) Segmentation Saliency [43] (SS): Saliency is measured
by the distribution contrast of CIELab color value
between the inner and outer parts of a sliding window
on the image.

C. New Candidate Features

Most existing saliency features listed above are based on
simple image features to activate saliency such as Gabor fil-
tered orientations. These features have relatively low descrip-
tion power. In contrast, more complex descriptors extensively
used in object recognition, such as HOG [44] and SIFT [45],
are rarely used as features in saliency models. These descrip-
tors provide invariant representations of image patches, i.e.,
they are robust to geometric and photometric transformations.
Given the distinction between these descriptors and simple
image features, saliency activated by these descriptors may
provide additional information for supervised saliency predic-
tion. We explore this possibility by computing a new saliency
feature based on HOG.

HOG extraction involves the following steps. The image
is first divided into non-overlapping squared grids (or cells),
and a histogram of pixel-wise oriented gradients is computed
within each cell. The histogram is then normalized over its
neighborhoods. Finally, a descriptor is obtained for each cell.
A multiscale pyramid representation is usually used to provide
both coarse and fine descriptions. This is achieved by itera-
tively subsampling the image by half on each side and dividing
the resulting images into the same number of cells such that
the cells on different levels cover the same sized region on the
original image.

HOG mainly describes texture information. But we pos-
tulate that edge information is also important for generating
saliency. To enhance the edge information another feature is
introduced based on HOG, called Canny-HOG (CHOG). It
differs from HOG only in the input: the input is the edge map
obtained by applying the Canny edge detector [46] to the orig-
inal image. Fig. 2 shows the input of CHOG. Multiscale HOG
descriptors are extracted from the edge map [47].

Essentially HOG gains its invariant representation by his-
tograms in different scale of cells. Inspired by this idea, three
additional saliency features are devised for color representa-
tion. The original image is transformed into HSV color space,

Fig. 2. Input to the CHOG, HH, SH, and VH descriptors. Best viewed in
color.

as shown in Fig. 2. Within each cell a color-histogram is con-
structed. Then three simple color histogram descriptors (HH,
SH and VH) are extracted from hue, saturation and value
channels, respectively.

After extracting these descriptors, the activation algorithm
in AWS [14] is used to compute saliency. The multiscale
descriptors corresponding to the same location i are concate-
nated to form a vector hi, and the image is described by a
matrix H = (h1, h2, . . . , hN), where N is the number of loca-
tions. At each location the saliency feature is computed by the
Mahalanobis distance between hi and the global mean

si =
(

hi − h
)T

W−1
(

hi − h
)

(1)

where h denotes the mean of h1, h2, . . . , hN , and W is the
covariance matrix of H. This measure is computed for all of
the five descriptors, and the resulting saliency features are
denoted by HOGS, CHOGS, HHS, SHS, and VHS, respec-
tively. Fig. 3 illustrates the procedure for computing HOGS.
The other four features are computed in similar ways.

Fig. 4 shows some sample images on which the proposed
features performed better than existing features. These sam-
ples suggest that the proposed features can complement the
existing ones for supervised saliency prediction when exist-
ing ones fail to provide a good prediction. For example, in the
first two images, texts are salient, and HOGS performed better
than other features. This might be due to its strong description
ability for textures.

D. Feature Selection Methods

1) L1-SVM: A popular feature selection method refers
to L1-SVM [35], which solves the optimization problem
(unbiased SVMs are used in this paper)

min
w

‖w‖1 + c
∑

i

max
(
0, 1 − yiwTxi

)2
(2)
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Fig. 3. Procedure for computing HOGS. Best viewed in color.

Fig. 4. Sample results of the proposed features and existing features. First row: sample images. Second row: the fixation density maps. Third row: the
saliency maps obtained by the proposed features. Fourth row: the saliency maps obtained by the best one among the 48 existing features. Best viewed in
color.

where xi denotes the feature vector of sample i, yi denotes the
classification label (1 or −1), w denotes the weight vector and
c is a cost parameter. In prediction, the saliency is computed
as the weighted sum of features, that is

f (x) = wTx. (3)

Note that in standard classification, the sign of f (x) is used
as the predicted label. To obtain a continuous saliency map,
here we do not binarize the results.

The L1-norm term in (2) forces the weights of unim-
portant features to be zero. c controls the tradeoff between
the L1 regularization term and the hinge loss term. When
c is smaller the L1 regularization term is weighted more,
and the resulting weight vector will become sparser. By
adjusting the value of c, different number of features
will be selected which correspond to those with non-zero
weights.

2) AdaBoost: AdaBoost iteratively trains a set of weak
classifiers on the training data and combines them into a
strong classifier. In each iteration a weak classifier is trained to

minimize the weighted classification error based on the perfor-
mance of previous classifiers. In this paper, the weak classifier
is a threshold on a selected feature. Then from iteration to
iteration, discriminative features will be selected. Denote the
output of each weak classifier by hi(x). Then a continuous
saliency value is calculated as

f (x) =
∑

i

αihi(x) (4)

where αi stands for the weight of the i-th weak classifier. Again
we do not binarize the prediction results.

3) Greedy Feature Selection (GFS): Unlike L1-SVM or
AdaBoost, wrapper methods [48] assess feature subsets
according to their usefulness to a given predictor. To avoid
exhaustive search for optimal feature combination, greedy
selection is used. In each iteration, candidate features are
ranked by a scoring function S and the one maximizing S
is selected

νk = argmax
i/∈{ν1,...,νk−1}

S
(
Xi, Y|Xν1 , Xν2 , . . . , Xνk−1

)
(5)



LIANG AND HU: FEATURE SELECTION IN SUPERVISED SALIENCY PREDICTION 905

where k denotes the iteration number, Xi denotes the i-th fea-
ture variable, Y denotes the label variable, and νk denotes the
index of the feature selected in the k-th iteration.

In the paper, S is defined as the cross-validation predic-
tion accuracy obtained by the standard linear L2-norm SVM
(replace ‖w‖1 in (2) with ‖w‖2

2; denoted by L2-SVM through-
out the paper) on the training set. Again, the saliency at
each testing location is calculated according to the continu-
ous function (3). The algorithm stops when some condition is
reached.

III. EXPERIMENT RESULTS

A. Experiment Setup

Three public human eye fixation datasets were used in our
experiments. The first is the MIT dataset [7]. It is a large
human fixation dataset consisting of 1003 indoor and outdoor
images. The longest image dimension is 1024 pixels and the
other dimension ranges from 405 to 1024 pixels. Each image
was viewed by 15 subjects for 3 s and the eye movement
data were recorded. The second is the Toronto dataset [9]. It
consists of 120 indoor and outdoor images with 681 × 511
pixels. Each image was viewed by 20 subjects for 4 s. The
third is the ImgSal dataset [10], which consists of 235 natural
images with 640 × 480 pixels. Different from the other two
datasets, it has two sets of labels for free viewing fixations
and human annotated salient objects, respectively.

Four metrics were used to quantitatively evaluate the per-
formance of models, including area under the (ROC) curve
(AUC) [49], normalized scanpath saliency (NSS) [50], his-
togram intersection (HI, in [51] this is called similarity score),
and linear correlation coefficient (CC) [52]. AUC is the most
widely used metric for saliency prediction. Given a thresh-
old th, pixels with saliency values higher than th are predicted
positive and others are predicted negative. Based on the clas-
sification results and the ground truth, a true positive rate
TPR and a false positive rate FPR are calculated. By vary-
ing th a set of TPR and FPR are obtained, resulting in an
ROC curve, and the area under this curve measures how well
a saliency map predicts the human fixation locations on an
image. An AUC of 1 corresponds to perfect prediction and
an AUC of 0.5 corresponds to random guess (chance level).
NSS is the average saliency value at human fixation loca-
tions, and the saliency map has been prenormalized to have
zero mean and unit variance. Higher NSS means better per-
formance, and NSS = 0 corresponds to random guess. HI is
defined as

∑
i min(Pi, Qi), where i denotes the spatial loca-

tion, P and Q denote the spatial distribution histograms of
a saliency map and the smoothed fixation map, respectively.
HI = 1 means that the two histograms are the same and HI = 0
means that the two histograms have no overlap. CC is cal-
culated as cov(F, S)/(

√
var(F)var(M)), which measures the

linear relationship between the smoothed fixation map F and
a saliency map M. CC = 1 indicates a perfect positive linear
relationship and CC = 0 indicates no linear relationship at all.

Note that NSS, HI and CC can be boosted by an appro-
priate monotonous transformation of saliency values. In
Borji’s model [8] the saliency maps were passed through an

exponential function before calculating NSS and CC. For fair
comparison, we applied a similar operation to the saliency
maps obtained by all other models presented in the paper
including our models and Judd et al.’s model [7]: s̃ = exp(s),
where s denotes the saliency value. Note that this operation
has no effect on AUC.

All of the 48 existing saliency maps on the three benchmark
datasets were obtained by executing their original implemen-
tations. The HOGS and CHOGS saliency maps were obtained
with the aid of VLFeat library [53], while the HHS, SHS, VHS
saliency maps were obtained with our own implementations.
The five new features used a four-level pyramid representation.
The side lengths of cells on different scale of images (from
fine to coarse) were 32, 16, 8, and 4, respectively.

The supervised learning methods L1-SVM and L2-SVM
were based on the Liblinear [54] implementations, and
AdaBoost was based on Gentle AdaBoost [55] implementa-
tion. For GFS, The average AUC of 5-fold cross validation on
the training set was used as the score S. For the MIT dataset
the numbers of positive samples np and negative samples nn

extracted from each image were both set to 10, same as in [7].
Since the Toronto and ImgSal datasets had much fewer images,
to collect enough samples, the two numbers were set to 100
for the two datasets.

GFS needs L2-SVM and the latter has a cost parameter c.
We found that the performance of GFS was insensitive to this
parameter. The results reported in the paper were obtained
with c = 1.

B. Feature Selection for Free Viewing Fixation Prediction

The feature selection methods were applied on the MIT,
Toronto and ImgSal datasets for free viewing fixation predic-
tion. Table I details the prediction accuracies of the L2-SVM
and three feature selection methods (GFS, L1-SVM, and
AdaBoost) portrayed by the metrics AUC, HSS, HI and CC.
Different hyper-parameters or stopping criteria of the three
feature selection methods were adopted, which led to two
versions of each method in the table. The details are as
follows.

Except the cost parameter c for the L2-SVM which is used
in GFS, GFS does not have any other hyper-parameters and
the only thing it has to choose is the stopping condition. In
general we cannot expect better performance with fewer fea-
tures if the candidate feature set is given, but this actually
happened in experiments. In fact, more features yielded worse
results on the training set due to over-fitting (Fig. 6). In view
of this, we chose the following stopping condition, denoted by
GFS-fewest: the average AUC of the 5-fold cross validation
on the training set first reached the average AUC obtained
with all features. The resulting feature subsets consisted of
only 9.2, 10.4, and 10.6 features on the MIT, Toronto and
ImgSal datasets on average. However, the performance was
nearly the same as that with all 53 features (see Table I).
This result suggests that the candidate features are highly
redundant.

Fig. 5 shows the feature selection processes in all five train-
ing trials. On each dataset the order of features entering the
subset were highly consistent, especially in early iterations.
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TABLE I
COMPARISON OF MODELS FOR FREE VIEWING FIXATION PREDICTION. VF DENOTES THE NUMBER OF VALID FEATURES. THE COST PARAMETER c FOR

L1-SVM1 WAS SET TO 2−11, 2−10, AND 2−11 ON THE MIT, TORONTO, AND IMGSAL DATASETS, RESPECTIVELY. FOR L1-SVM2 IT WAS SET TO 2−8,
2−8, AND 2−9 ON THE THREE DATASETS, RESPECTIVELY. THE ITERATION NUMBERS OF ADABOOST1 AND ADABOOST2 WERE SET TO 15 AND 57,

RESPECTIVELY. FIVEFOLD CROSS VALIDATION RESULTS ARE REPORTED FOR THE MODELS IN THE FIRST AND SECOND GROUPS

AND JUDD et al.’S MODEL [7]. TENFOLD CROSS VALIDATION RESULTS ARE REPORTED FOR BORJI’S MODEL [8]

Fig. 5. Feature selection processes of GFS-fewest for free viewing fixation prediction. All of the five trials on the (a) MIT, (b) Toronto, and (c) ImgSal
datasets are shown. The y-axis denotes the iteration number and the x-axis denotes the AUC obtained by the selected features so far.

On the MIT dataset, GBVS, Center, AWS, HOGS, and Face
were always selected in the first five iterations. On the Toronto
dataset, GBVS, IS, Center, AWS, and CHOGS were selected

in the first five iterations most of the time, except in the
fourth trial where IS was replaced by SDSR-G. On the ImgSal
dataset, GBVS, CAS, Center, AWS, HHS, and CHOGS were
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Fig. 6. Average AUC of fivefold cross validation on the training set with respect to the iterations in a sample trial on the (a) MIT, (b) Toronto, and (c)
ImgSal datasets. The horizontal lines indicate the average AUC with all features.

always selected in the first six iterations. Other observations
are as follows.

First, three features, i.e., GBVS, Center and AWS were
always selected in the first few iterations on the three datasets,
which implies that they are critical for predicting eye fixations.

Second, some newly designed features in this paper includ-
ing HHS and CHOGS were often selected in the early
iterations of many training trials. This observation supports
the effectiveness of the new features.

Third, the features selected on each dataset are significantly
different from each other in construction. For example, among
the five features selected on the MIT dataset, Center is a high-
level summarization about the possible salient locations. Face
feature reflects the tendency to fixate at interesting objects.
GBVS and AWS are based on similar low-level features. The
former uses a distance-dependent activation algorithm and the
later uses a distance-independent one. HOGS is based on
different image descriptors and adopts the same activation
algorithm as AWS.

To explore whether the performance of GFS can be further
improved by adding more features, we set the iteration num-
ber to 53 and took the maximum average AUC on the training
set over all iterations. This condition is denoted by GFS-max
in Table I. Note that the maximum AUC may not be achieved
on the final iteration due to over-fitting (see Fig. 6). This
resulted in 24.4, 27 and 24.2 features on average over the MIT,
Toronto and ImgSal datasets, respectively (Table I). Compared
with GFS-fewest, GFS-max yielded better performance on
testing sets under most metrics, but the improvements were
very small. This indicates that the GFS-fewest subsets have
included enough useful features.

By adjusting the hyper-parameter c for L1-SVM and the
total number of iterations for AdaBoost, we can obtain
different number of valid features and different prediction
accuracies. In experiments, we found that with appropriate
hyper-parameters the two methods could also achieve good
results, though not as good as GFS in general. As we were
mostly concerned with the number of valid features, we tuned
these hyper-parameters to achieve roughly the same number
of features as GFS-fewest and GFS-max, respectively, which
has led to L1-SVM1, L1-SVM2, AdaBoost1, and AdaBoost2.
See Table I. L1-SVM did not perform as well as GFS, espe-
cially for the version with fewer features. AdaBoost achieved
the highest HI scores on the MIT and Toronto datasets, but

performed worse than GFS and L1-SVM under the other three
metrics.

For comparison, the results of two state-of-the-art super-
vised saliency models [7], [8] are also presented in Table I.
The results of Judd et al.’s model [7], which adopted 33
features, were obtained by executing the codes downloaded
from an author’s website. The results of Borji’s model [8],
which adopted 35 features, were obtained by using the
saliency maps downloaded from the author’s website. Only
the saliency maps of the MIT and Toronto datasets were
available. The saliency maps of the MIT dataset were
obtained by 10-fold cross validation. The saliency maps of
the Toronto dataset were obtained by a model trained over
the MIT dataset. With about ten features on average, GFS
and L1-SVM beat the two models under nearly all metrics.
With about 26 features on average, AdaBoost also beat the
two models.

It has been shown that among the three feature selection
methods, GFS performed the best. However, it is computa-
tionally expensive. On a mainstream PC one GFS training trial
took about 14 hours on the MIT dataset while L1-SVM only
took a few seconds and AdaBoost took tens of seconds. If
feature selection is needed in some online applications, one
should consider L1-SVM instead. But in this paper, feature
selection was conducted offline and we were more interested in
the properties of selected features. Therefore, in what follows,
we base our analysis on GFS.

C. Optimal Feature Sets

Though the GFS-fewest method obtained excellent results
with 9.2, 10.4, and 10.6 features on average over the three
datasets, respectively, the features selected in different trials
were not identical, as shown in Fig. 5. Two interesting ques-
tions arise. First, is there a fixed optimal feature set that can
achieve similar accuracy to GFS-fewest on each dataset? Such
a set would make it clearer which features are indeed use-
ful for saliency prediction on the particular dataset. Second,
are these optimal feature sets robust across different datasets?
If yes, then we can directly apply these features on new
datasets without performing feature selection again, which is
time-consuming.

We investigated the first question by constructing the opti-
mal feature set for each dataset as follows: select features that
were selected at least four times in the total of five GFS-fewest
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Fig. 7. AUC achieved by individual features without supervised information. Black, blue and red bars correspond to features belonging to naïve set, optimal
set, and both, respectively. Yellow bars correspond to other features. Best viewed in color. (a) MIT. (b) Toronto. (c) ImgSal.

trials. This resulted in a feature set with size 9, 8, and 9 for
the MIT, Toronto and ImgSal datasets, respectively.

1) MIT: GBVS, Center, AWS, HOGS, Face, SHS, HHS,
CHOGS, and Subband10.

2) Toronto: GBVS, IS, Center, AWS, HHS, CHOGS,
Subband10, and R.

3) ImgSal: GBVS, CAS, Center, AWS, SS, HHS, VHS,
CHOGS, and IttiC.

These features led to nearly identical scores with GFS-
fewest and outperformed the two state-of-the-art models (see
Table I, Optimal).

A naïve control approach would be selecting the same num-
ber of features with the best individual performances on each
dataset. For this purpose, we calculated the AUC for each of
the 53 features individually (Fig. 7). The following features
were selected to construct the control sets.

1) MIT: GBVS, Center, IMS-C, RCSS, IMS-F, ICL, IS,
CAS, and AWS.

2) Toronto: GBVS, HOGS, SS, Center, CAS, RCSS, IMS-
C, and AWS.

3) ImgSal: GBVS, CAS, Center, RCSS, IMS-C, IMS-F, IS,
ICL, and AWS.
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Fig. 8. Redundancy matrices for the optimal features (left) and naïve features
(right) on the MIT (top), Toronto (middle), and ImgSal (bottom) datasets. Best
viewed in color.

Under all four evaluation metrics these control sets were
outperformed by the optimal sets (see Table I, Naïve).

For each dataset, the optimal feature set and the control
set had three (MIT and Toronto) or four (ImgSal) features
in common (red bars in Fig. 7). Other features alone in the
optimal sets (blue bars) could not compete with other fea-
tures in the control sets (black bars). The better performance
achieved by the optimal sets suggests more redundancy among
features in the control sets than in the optimal sets. To verify
this, we defined a redundancy measure R(i, j) between two fea-
tures Xi and Xj with respect to the ground-truth saliency labels
(see the Appendix). R(i, j) is between 0 and 1, and a higher
value indicates more redundancy. Fig. 8 shows the redundancy
matrices for the optimal features and the naïve features on the
three datasets. It is evident that the optimal features contain
less redundant information than the naïve features.

We then investigated the second question raised in the begin-
ning of this subsection. Note that the three datasets have rather

different properties. The MIT dataset contains many daily life
objects such as faces and texts, while the Toronto dataset rarely
contains these objects. The ImgSal dataset contains salient
objects of different sizes. In spite of these differences, the
three optimal feature sets had five features in common: GBVS,
AWS, Center, CHOGS, and HHS.

We then conducted fivefold cross validation on a dataset
with the optimal features for another dataset. In this case, the
optimal features for different datasets were swapped (Swap1
condition). The average scores of four metrics were calcu-
lated. For better illustration, the scores on each dataset were
then normalized by dividing the scores obtained with its own
optimal features (Table I, Optimal). Most of the scores were
very close to 1 (Fig. 9, top), suggesting that the optimal fea-
tures were robust across different datasets. Next, we trained a
model on a dataset with its own optimal features and test on
the other dataset. In this case, not only the optimal features but
also the models (i.e., feature weights) were swapped (Swap2
condition). Even in this case, the performance did not degrade
much (Fig. 9, bottom), suggesting that the trained models were
robust across different datasets. In addition, one can verify
that the models in the two swap conditions performed bet-
ter than the two existing models [7], [8] by transforming the
normalized scores in Fig. 9 to original scores.

D. Feature Selection Without the Center Prior

The center prior is undoubtedly useful for saliency predic-
tion during free viewing static images because of the strong
center bias. However, for other tasks such as visual tracking
center bias may not be useful anymore. In this case it will
be important to find the indeed useful features other than the
spatial bias of specific tasks. We explored this issue by dis-
carding the center prior from the candidate feature set, and
then selecting features using GFS. The resulting GFS-fewest
feature sets consisted of 11, 10.2 and 8.4 features on average
for the MIT, Toronto and ImgSal datasets, respectively (see
Table II).

We then constructed the optimal features using the same
method as in Section III-C. The resulting optimal features were
as follows.

1) MIT: GBVS, AWS, HOGS, Face, CHOGS, HHS,
Subband10, RCSS, SRS, and FTS.

2) Toronto: GBVS, AWS, IS, CHOGS, HHS, and
Subband10.

3) ImgSal: CAS, GBVS, AWS, HHS, IttiO, RCSS, and
HOGS.

Many of these optimal features were shared with the opti-
mal feature set with the center prior (seven for MIT dataset, all
for Toronto dataset and four for ImgSal dataset). As expected,
when there was no center prior, the features with implicit cen-
ter bias were favored by GFS such as RCSS, which was not
selected when the center prior was present.

Note that the optimal models for the MIT and ImgSal
datasets have yielded nearly identical scores to GFS-fewest
(Table II). The selected features on the Toronto dataset had
larger variations across different trials, resulting in an optimal
set with only six features. As a result, its performance was
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Fig. 9. Normalized scores in two swap conditions. Top (Swap1): in each matrix the element on the ith row and jth column corresponds to the average
score of fivefold cross validation on dataset i using optimal features for dataset j. Bottom (Swap2): in each matrix the element on the ith row and jth column
corresponds to the testing score on dataset i with a model trained on dataset j using optimal features for dataset j. All scores in the figure have been normalized
by dividing the average score of fivefold cross validation on dataset i using optimal features for dataset i.

TABLE II
COMPARISON OF THE MODELS FOR FREE VIEWING FIXATION PREDICTION WITHOUT THE CENTER PRIOR.

PARAMETER SETTINGS ARE THE SAME AS IN TABLE I

TABLE III
COMPARISON OF THE MODELS ON THE IMGSAL DATASET FOR BOTH FREE VIEWING FIXATION PREDICTION

AND SALIENT OBJECT DETECTION. PARAMETER SETTINGS ARE THE SAME AS IN TABLE I

not as good as the GFS-fewest. A possible reason is that this
dataset has too few images for yielding a robust fixed set of
features.

E. Free Viewing Fixation Versus Salient Object Detection

There are two types of attention, bottom-up saliency and
top-down attention. The former is stimulus-driven and the lat-
ter is goal-directed. In the task of free viewing, eye fixations
reflect bottom-up saliency, while the annotation in the task of
salient objects detection may be more influenced by top-down
attention. To find out how the features are weighted by differ-
ent tasks, we also conducted GFS feature selection over the
ImgSal dataset using the human annotated salient object labels.
The results were compared with that using eye fixation labels.

The task of detecting salient objects resulted in a larger
GFS-fewest set and an optimal set than those for the fixa-
tion prediction task (see Table III). This is reasonable because

top-down attention involves more complex high-level factors
than bottom-up saliency. The optimal features for the free
viewing task were GBVS, CAS, Center, HHS, VHS, AWS,
SS, CHOGS, and IttiC; for the salient object detection task
were GBVS, CAS, Center, HHS, VHS, IMS-F, IMS-C, SDSR-
L, SDSR-G, HOGS, R, GProb, and People. The two sets had
five features in common.

As before we conducted two swapping experiments across
the two tasks. Swap1 achieved very similar scores to the opti-
mal features. Swap2 achieved lower scores, though the gap
was not so big. See Table III. These results suggest that the
definitions of saliency in the two tasks are consistent, which
is in agreement with [28].

IV. CONCLUSION

We investigated feature selection in supervised saliency
learning. A rich set of candidate features was first constructed
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consisting of many existing ones in the literature and several
newly designed ones. After feature selection, we found that a
few features could achieve comparable results to all features.
This was validated with extensive experiments on three human
eye fixation prediction datasets. The model with these selected
features beat existing models on these benchmark datasets.
In addition, the features selected on one dataset, as well as
the model trained on it, were also effective on other datasets,
indicating their robustness.

This paper has some other implications which are worth
further investigations. First, we have seen that during the
process of feature selection, some newly designed histogram-
based features were often selected in the first few iter-
ations, which implies that complex image descriptors are
useful for predicting eye fixations. Such descriptors have
been rarely studied in the context of saliency prediction.
Second, experimental results on a dataset for both free view-
ing fixation prediction and salient object detection suggest
consistency of the two tasks in terms of effective features.
But this conclusion needs empirical support on other salient
object detection datasets, especially those without dataset
design bias [28].

APPENDIX

REDUNDANCY BETWEEN TWO FEATURES

We treat the feature Xi and the ground-truth label Y as ran-
dom variables and define the redundancy between features Xi

and Xj as

R(i, j) = I(Y; Xi) + I(Y; Xj) − I(Y; Xi, Xj)

I(Y; Xi)
(6)

where I(U; V) denotes the mutual information between two
random variables U and V

I(U; V) = H(U) + H(V) − H(U, V)

where H(U) = −∑
U P(U) log P(U) is the entropy of U with

the probability distribution P(U). Intuitively, mutual informa-
tion measures the information that U and V share. In general,
higher R value between two features indicates more redun-
dancy between them. On one extreme, if the information
shared by Xi and Y is totally different from that shared by Xj

and Y , then the two features Xi and Xj contain no redundant
information about Y and R(i, j) = 0. On the other extreme, if
the information shared by Xi and Y is the same as that shared
by Xj and Y (e.g., the two features are identical), then the infor-
mation about Y contained in Xi and Xj are totally redundant
and R(i, j) = 1. Note that R(i, j) is normalized by I(Y; Xi),
so the redundancy matrix R is nonsymmetric. This similarity
measure differs from that in [51], which is used for comput-
ing the similarity between pairs of saliency maps obtained by
different models, where the ground-truth label information is
not considered.

The problem then reduces to determining the probability
distributions of the random variables Xi and Y . Since Y has
only two possible values ±1, it is natural to treat it as a binary
variable. Its probability distribution is estimated by sampling

a large set of pixels on images over the dataset

P(Y = 1) = ‖{j:y j = 1}‖
N

P(Y = −1) = ‖{j:y j = −1}‖
N

(7)

where y j denotes the label of sample j, N denotes the number
of samples and ‖‖ denotes the cardinal of a set. The feature Xi

is real-valued, but for simplicity we convert it to binary values
with a threshold ti. The probability distribution is estimated by
sampling a large set of samples on saliency maps produced
by Xi

P(Xi = 1) = ‖{j:xi
j > ti}‖
N

P(Xi = −1) = ‖{j:xi
j ≤ ti}‖
N

(8)

where xi
j denotes the value of sample j on the saliency

map produced by Xi. The threshold ti is chosen to maximize
I(Y; Xi). The joint distributions P(Xi, Y) and P(Xi, Xj, Y) are
estimated similarly, for example

P(Xi = 1, Y = 1)
‖{j:xi

j > ti, y j = 1}‖
N

P(Xi = 1, Xj = 1, Y = 1) = ‖{k:xk
i > ti, xk

j > tj, yk = 1}‖
N

.

(9)
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