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Abstract— We present a traffic sign detection model consist-
ing of two modules. The first module is for ROI (region of
interest) extraction. By supervised learning, it transforms the
color images to gray images such that the characteristic colors
for the traffic signs are more distinguishable in the gray images.
It follows shape template matching, where a set of templates
for each target category of signs are designed. After that, a set
of ROIs are generated. The second module is for recognition.
It validates if an ROI belongs to a target category of traffic
signs by supervised learning. Local shape and color features
are extracted. The supervised learning methods used in the
model are SVMs. The overall model is applied on the GTSDB
benchmark and achieves 100%, 98.85% and 92.00% AUC
(area under the precision-recall curve) for Prohibitory, Danger
and Mandatory signs, respectively. The testing speed is 0.4-1.0
second per image on a mainstream PC, which demonstrates the
great potential of the proposed model in real-time applications.

I. INTRODUCTION

Traffic safety is an important issue for designing intelli-
gent transportation systems. A popular way of improving
traffic safety is by deploying an on-board camera-based
driver alert system for detecting traffic signs such as stop
signs, speed limit signs, etc. The purpose of traffic signs
is to inform drivers about the current state of the road
and giving them other important information for naviga-
tion. Traffic signs are planar rigid objects with different
shapes and colors. The information provided by the traffic
signs is encoded in their visual properties: shape, color,
and pictogram. Several car manufacturers have adopted the
Advanced Driver Assistance System which includes traffic
sign recognition. For instance, in 2008, Mobileye partnered
with Continental AG to launch three features in the BMW 7
series, namely, a lane departure warning, speed limit informa-
tion based on traffic sign detection and intelligent headlight
control (http://mobileye.com/technology/ applications/traffic-
sign-detection/).

The image quality in real-world traffic scenarios is usu-
ally poor due to low resolution, weather condition, varying
lighting, motion blur, occlusion and so on. Images of signs
may be diverted from the fronto-parallel view due to the
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Fig. 1. Some challenging scenarios for traffic sign detection. For clarity,
a bounding box is overlaid in the image to denote the ground truth.

inherent tilt and rotation, and projective transformation of
the camera system. See Fig.1 for some examples. The traffic
sign detection in such challenging scenarios is still an open
problem.

The most popular approach for detecting traffic signs is
based on the color segmentation. Many color spaces were
utilized, see [1]–[2] for some examples. An obvious disad-
vantage of such methods is that many thresholds are required
to be prescribed by the designer. Some researches treat the
color segmentation as a classification problem and utilize
support vector machine (SVM) to detect the traffic signs
[3], [4]. Compared with segmentation, another approach [5]
establishes a probabilistic measure for traffic sign colors
to provide color information for the following processing
stages.

Another important feature of traffic signs is their shape.
The circular and triangular shapes have been investigated
in many literatures, such as [6], [7]. The performance of
shape detection is robust in structured environments (such
as on highways), but in clutter environments, it is sensitive
to noise. In addition, the extraction of shape is usually
time-consuming. A better method is to combine the color
and shape information to enhance the performance. Various
combination strategies were proposed in [8], [9] for detecting
specific traffic signs.

Although various approaches have been proposed to solve
the traffic sign detection problem, it is difficult to compare the
actual performance of these as there is neither a standardized
dataset nor a standardized procedure for evaluating perfor-
mance. Very recently, the German Traffic Sign Detection
Benchmark (GTSDB), a dataset of more than 900 traffic sign
images was created [10] (see http://benchmark.ini.rub.de/),
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which provides a testbed for different traffic sign detection
algorithms. A competition is organized at the International
Joint Conference on Neural Networks (IJCNN) 2013. There
are four categories of traffic signs in the dataset, that is,
Prohibitory, Danger, Mandatory and Other (see Fig. 2 for
examples), and the task is to detect the first three categories
of signs.

(a) Prohibitory traffic signs

(b) Danger traffic signs

(c) Mandatory traffic signs

(d) Other traffic signs

Fig. 2. Traffc sign examples

The competition went in this way. First 600 training
images together with ground truths results were released on
the website. After about 2 months 300 testing images without
ground truths were released on the website. Registered teams
need to submit their detection results on the testing images
to a server to evaluate the performance of their algorithms.
This paper describes our algorithm for the competition.

The paper is organized as follows: Section II gives the
overall framework of our model. Section III and Section
IV describes the ROI (region of interest) module and the
recognition module, respectively, which are the two major
components of the proposed model. Section V presents the
experimental results on the training set and testing set.
Finally, some conclusions are drawn in Section VI.

II. OVERALL FRAMEWORK

The entire model consists of two modules: the ROI ex-
traction module and the recognition module. See Fig. 3 for
the overall framework. The ROI module consists of three
steps. The first step is color transformation, which maps
the RGB value of each pixel to gray value. The second
step conducts shape matching over the gray images to find
the possible sign locations. The third step refines the ROI.
This module exploits the regularity of traffic signs in their
color and shape with high efficiency. The recognition module
extracts histogram descriptors from the ROIs to provide a

robust representation of traffic sign appearance, and uses
SVMs to judge whether an ROI is a target sign or not.

Fig. 3. The overall framework

III. ROI MODULE

The GTSDB includes three categories of traffic signs
for detection: Prohibitory, Mandatory and Danger. Although
the signs are different from each other, signs within one
target category have some common properties. Prohibitory
signs have circular red borders, Danger signs have triangular
red borders and Mandatory signs have blue backgrounds
and white arrows. See Figure 2 for examples. These are
distinguishable traits for these target categories. The ROI
module performs as a weak classifier for each category by
paying little attention on the details of the texture of each
category. It considerably reduces the search space for further
processing. The advantage of this module is its high running
speed.

The overall process consists of three steps, as illustrated
by a Danger sign example in Figure 4. The first step is
the pixel-wise color transformation, which transforms the
original color image to a gray value image, and maps positive
colors (red in the Danger category) to high intensities and
negative colors (all colors but red in the Danger category) to
low intensities. The Danger signs in the transformed image
show high contrast between the white triangle contour and
the dark inner triangle and surroundings. This provides a
good start point for the subsequent shape matching step, in
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which regular templates are used to do multi-scale matching
with the transformed image. The maximum matching score
appears around the sign location. The output ROIs are then
obtained by a post-processing step.

A. Color transformation

The exact RGB color values of traffic signs are easily
affected by various light and weather conditions. Further-
more, the signs may be partially damaged, their colors may
fade and the images may be blurred by moving cameras.
To overcome these difficulties, traditional methods usually
preprocess the image by transforming it to another color
space, like HSV [2] or YUV [11], to reduced the light
variation effects, and then setting certain thresholds to obtain
the segmented ROIs.

Different from the standard color space transformation,
machine learning techniques is used here to establish a
mapping from the 3D color value to the intensity value.
The original RGB space is used because experiments with
other color spaces find no improvement. First, the distinct
colors of the traffic sign are treated as the positive colors
with labels +1, while the other colors are treated as the
negative color with labels -1. Visual inspection shows that
all of the Prohibitory and Danger signs have red borders,
so red is treated as the positive color for these signs. All
of the Mandatory signs have blue backgrounds and as a
consequence blue is treated as the positive color for these
signs. Note that for each category, colors different from
the positive color are treated as the negative color, but in
addition to that, for the Danger category, a different setting
with white and black as the negative color is used (see the
bottom row of Fig. 6(c), where some shape templates are
designed according to this setting). A set of positive samples
and negative samples are annotated and used as the training
data.

Second, the training data is input to a support vector
machine (SVM) and a classifier is learned. More specifically,
a three order polynomial kernel over the raw RGB value
is constructed, and the Liblinear [12] SVM implementation
is used to do the training. This is because the classifier
is good enough with polynomial kernel and the time cost
in prediction is much shorter than using more complex
kernels. Furthermore, the combination of polynomial kernel
computation and Liblinear is faster than directly using libsvm
[13].

Third, given a new image, the continuous SVM decision
function value

∑
i wiφi(r, g, b) is computed as in [4]. Pixels

with absolute decision values larger than 1 are considered
to have high confidence, and their transformed intensities
are simply the class labels (binary values) : +1 and -1. For
other pixels with less classification confidence, the binary
values are replaced by the decision values as in [3] for
robustness: wrongly classified labels may lead to reduced
recall, which is detrimental to the performance of the ROI
module. On the other hand, the continuous values are easily
integrated with the subsequent shape matching steps to refine
the ROI, as long as the intensity contrast remains. This step

Original image 

COLOR TRANSFORMATION:  
transform red colors to high intensities 
and other colors to low intensities 

SHAPE MATCHING:  
use regular templates to convolve the 
transformed image 

∗ 

THRESHOLDING AND OUTPUT ROI 

Fig. 4. Process of ROI module
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 𝑤𝑖𝜙𝑖 𝑟, 𝑔, 𝑏𝑖 , otherwise  

Fig. 5. Color transform

is illustrated in Figure 5. For processing a testing image,
it has the complexity of O(pixel number) and can be fast
computed.

B. Shape matching

(a) Prohibitory templates

(b) Mandatory sign

(c) Danger sign

Fig. 6. Shape templates. Each one is 16-by-16.

Gray-value templates are hand-crafted to do multi-scale
matching with the pyramid obtained from the transformed
intensity image. The correlation coefficient is adopted as the
matching score. Higher score denotes larger possibility of a
traffic sign detected at the corresponding location and scale.

Instead of using different scales of templates, the input im-
ages are scaled to different sizes (see Section V-A for details).
So we use the same scale of templates. Figure 6 shows the
designed gray-value templates, each of size 16-by-16. For
Prohibitory signs, two templates are enough for detecting
all signs, and the matching score is the larger matching
value of them. Note that the second template is specifically
designed for detecting signs similar to the 9th example in
Fig. 2(a). The Mandatory signs have many different arrows,
and eleven templates are used. The matching score is the
maximum matching value of those templates. For the Danger
signs, two sets of templates are designed for the two color
classifiers, respectively, as described in Section III-A. The

top row of of Figure 6(c) demonstrates the templates for the
first classifier which uses red color as the positive color and
all the other colors as the negative color. The bottom row
of of Figure 6(c) demonstrates the templates for the second
classifier which uses red color as the positive color and white
and black as the negative color. Note that in this case only the
triangle part (white and black) is used for matching, and the
surrounding area (gray) is not considered. This aims to avoid
the unwanted influence of wrongly classified background. To
account for possible rotational variations, in each set five
Danger templates of different orientations are used and the
maximum matching score over them is computed. Let c1 and
c2 denote the maximum scores of these two sets, respectively,
then the final score is max{αc1, c2}, where α is a constant.
Experiments indicated that α = 1.2 is a good choice.

Matching can be implemented by convolutions, which are
much efficient than sliding windows. Furthermore, matching
process with different templates and different scales can be
easily implemented in parallel. These two characters make
the matching an efficient step.

C. ROI refinement

The matching score is truncated by a threshold th, which
is selected to be uniformly distributed in a range so that
the lowest th led to a recall of 1 on training images. With
each th a set of interest points are obtained. Raw ROIs are
the rectangle bounding boxes centered in the interest points.
These bounding boxes have the same size with the template
in the matched scale. Because the spatial matching interval
is one pixel, there are usually a number of overlapping raw
ROIs within a neighborhood. A simple algorithm is used
to refine the raw ROIs. Let A1 and A2 denote the areas
of two raw ROIs, and O denotes their intersection area.
If max (O/A1, O/A2) > 0.2, the two ROIs are regarded
as overlapping, and the one with the lower matching score
is discarded. Refined ROIs are then sent to the recognition
module for validation.

IV. RECOGNITION MODULE

The preprocessing step greatly downsize the search space
of traffic signs in an image while keeping nearly all of the
true positives. But the precision needs improvement since the
ROI module just utilizes the information of the borders of
the signs. It is evident that the inner contents of the traffic
signs also carry important discrimination information. So
It is necessary to apply a recognition module to classify
the refined candidate windows. The process consists of
three steps: feature extraction, classification and candidates
grouping.

HOG (histogram of oriented gradients) [14] can provide
a robust and discriminative representation of local image
regions, and has been successfully used in pedestrian and
car detections. In the recognition module this feature is
employed. Because HOG is based solely on orientation
information, two color histogram features (hue and saturation
histogram [15]) are added to complement color information.
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Our experiments showed that the latter could improve the
recognition performance.

The RBF kernel SVM is adopted to classify the candidate
windows because it is more effective than using other kernels.
The training procedure involves 2 phases. First, all samples
labeled as Prohibitory, Danger, Mandatory, Other, are used to
train a 4-class one-against-one SVM model. And the resulted
classifier is tested on the training images. As the number of
Other samples is small and cannot represent the negative
samples well, it will result in a lot of false positives for
each target category. The false positives are then used as
additional negative samples to train three binary classifiers in
the second training phase. In this phase, a binary classifier is
trained for each target category, where the negative samples
are all samples with labels different from the target category
including the false positives obtained in the first phase. This
two-phase scheme is designed for improving the precision
of the classification, since in the first phase many significant
negative samples for each category are found and they are
critical for deciding the SVM decision plane.

Note that after training a 4-class SVM in the first phase,
the classifier is then tested on every window on the training
images (which is implemented in a sliding window scheme),
instead of the ROIs obtained by the ROI module. Then it
follows the second phase training. This will increase time
cost but diminish the effect of imprecision of the ROI
module. Parallel computing framework is introduced to the
implementation of the recognition module in order to reduce
the time consumed in the off-line training period.

In the last step, since a lot of true positive windows are
detected around the real traffic signs (because windows with
offset of few pixels have the similar feature vector thus can
also be classified to the same category), it is necessary to
merge the similar windows together. In our implementation,
a voting scheme is adopted to group the windows and select
the most matched one as the result. First, candidate windows
are grouped by assigning any two windows to one group if
the area of the region they share is larger than k times the area
of either of the two, where k is an overlap factor. Second, the
mean rectangle of the candidate windows for each group is
calculated with the largest decision value of SVM prediction.

V. EXPERIMENTAL EVALUATION

We first analyzed the performance of the modules on the
training data, which has 600 images in total: 264 images
contain Prohibitory signs, 125 images contain Danger signs
and 99 images contain Mandatory signs. A set of optimal
parameters were determined on the training set and the model
was trained on the entire training set and tested on the testing
set, which consists of 300 images.

A. Evaluation of the ROI module on the training set

To do color transformation, positive color data was manu-
ally annotated and negative color data was randomly picked
from the GTSDB training set. The shape templates were
manually designed as shown in Fig. 6 which has size 16-by-
16. Instead of using different scales of templates, we resized

the input images to different scales. It was found that the min-
imum size of the traffic signs on the GTSDB training set is
about 16-by-16, and the maximum size is about 128-by-128.
So, each input image was resized 1/k0, 1/k1, . . . , 1/k22,
where k = 1.1.

For the Prohibitory signs, 17614 positive pixels and
200000 negative pixels were collected from randomly picked
65 images. Because Danger signs had the same positive
color (red) as that of Prohibitory signs, the same set of
positive color data was used for Danger signs. The Precision-
Recall (PR) curves for the generated ROIs over the remaining
535 training images are shown in Fig. 7(a) and Fig. 7(b).
Surprisingly, the AUC (area under curve) of the two PR
curves are 0.9954 and 0.9779 respectively, which implies
that the ROI module alone is a good detector.

As a preprocessing module, the generated ROIs should
keep the recall as high as possible and maintain low false
positives. When the recall for the Prohibitory signs reached
1, only 697 windows were detected as ROIs. When the recall
for the Danger signs reached 1, a total of 69803 windows
were detected as ROIs but this number is still far less than
that in the sliding windows approach.

For the Mandatory signs, 24920 blue positive pixels and
200000 negative pixels were collected from all 99 training
images containing the targets as this category had relatively
less images. The PR curve over all 600 training images was
shown in Fig. 7(c), and the AUC was 0.9179.

We also tested the performance of the ROI module with
binary output instead of the continuous output in the color
transformation step. From Fig. 7 it is seen that this setup
produced worse results.

B. Parameter settings for the recognition module

The standard HOG feature implementation [14] was
adopted. The parameters were set as follows: window size
was 32-by-32; block size was 16-by-16; cell size was 8-by-
8; block stride was 8-by-8; orientation was quantified to 9
bins. So the dimension of the feature was 324. For different
scales of traffic signs, the image was firstly resized to fit the
HOG window size and then the descriptor was calculated.

Color histogram features [15] were generated in a similar
way: The 32-by-32 window was first divided into 4-by-
4 grids, each of which was 8-by-8. The hue and satura-
tion space were respectively quantified into 10 bins and
the histograms were calculated for each grid. At last the
32 histograms were concatenated together to form a 320-
dimensional vector as the color descriptor.

In the first training phase all of the positive samples
(852 samples of 3 target categories and the Other category)
were used. Some (about 500) randomly selected samples
cropped from the images were also used to enlarge the Other
category. This led to hundreds of false positives for each
target category, which were used as the negative samples in
the second training phase. The LibSVM [13] implementation
of the RBF kernel SVM was adopted. The parameters of
RBF kernel SVM classifier were set as γ = 0.1 and C = 10,
which were determined by cross-validation on the training
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(a) Prohibitory ROI PR Curve
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(b) Danger ROI PR Curve
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(c) Mandatory ROI PR Curve

Fig. 7. PR Curves of ROI over images in the training set. Red and
blue curves correspond to results with continuous output and binary output,
respectively, in the color transformation step.

TABLE I
AUC OF THE PROPOSED ALGORITHM

Method Name
Category HOG+COLOR HOG

Prohibitory 100% 98.97%
Danger 98.85% 96.86%

Mandatory - 92.00%

set. The searching space for γ was from 0.001 to 1, and for
C from 1 to 20.

After the first training phase, 44 different scales with
increasing ratio of 1.05 between two adjacent scales were
calculated to cover all possible traffic signs whose sizes range
from 16-by-16 to 128-by-128. For each scale, the image was
first resized to fit the slide window, which had the size fixed
to 32-by-32 to generate HOG features of fixed dimension
(324 in our settings described above). Second, the image
was scanned and the candidates were extracted by moving
the window from left to right and top to bottom at the step of
8 pixels. That would generate 15936 candidate windows in
a 1360-by-800 testing image at the scale of 1. It was a huge
challenge to evaluate all the candidate windows in 44 scales
in acceptable time. So a multi-scale slide window algorithm
with a parallel scheme was implemented. On an Intel 4-core
3.7GHz CPU, 8G RAM computer, it cost about 60 seconds
for processing each image.

On the testing set, the classifier trained above was used for
selecting the true positives from ROI windows generated by
the previous step. Since the preprocessing step had removed
most of the bad windows (with very few true positives), the
candidates could be evaluated fast enough that parallelization
was not necessary any more. In fact, it cost about 0.4-1.0
second to test each image, which demonstated great potential
for real-time detection.

C. Results on the testing set

The optimal parameters for the ROI module were obtained
on part of the training set as described in Section V-A and the
optimal parameters for the recognition module were obtained
on the entire training set as described in Section V-B. Then
the model was evaluated on the testing set. Due to the time
limit, we did not fully experimented with all features over the
Mandatory category, and the submitted result was obtained
with the HOG feature only. Fig. 8 shows the PR curves on the
three target categories and Table I shows the corresponding
AUC. The best result is on the Prohibitory category, which is
100%. The other results are also competitive. In Fig. 9 some
snapshots of the competition results on the GTSDB website
are listed (our team is named LITS1).

VI. CONCLUSIONS

In the paper we present an efficient pipeline for detecting
traffic signs. For any input image, first, a set of ROIs are
extracted. Second, a recognition model is applied on each
ROI to judge if this ROI is a traffic sign in a specific
category. In both steps, supervised learning is used. The
critical technique in the first step is to learn a characteristic
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(b) Danger PR Curves
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Fig. 8. PR Curves of the entire model on the testing set

(a) Prohibitory category

(b) Danger category

(c) Mandatory category

Fig. 9. Part of the competition results

color for each category of signs, which is accomplished by
a polynomial kernel SVM. This technique follows template
matching, where shape templates are designed by summariz-
ing the characteristics of the signs on the training set. Exper-
iments showed that this step was effective and efficient. The
critical technique in the second step is to extract appropriate
features for classification. A combination of HOG features
and color histogram features is used in the model. Evaluated
on GTSDB benchmark, the model achieved 100% AUC for
the Prohibitory category and 98.85% AUC for the Danger
category, which is competitive to other teams’ results in this
IJCNN competition.

A distinguished property of the proposed pipeline refers to
its fast testing, 0.4-1.0 seconds per image. It has great poten-
tial in realtime computing applications, e.g., autonomous
vehicle guidance.
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