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Abstract

One-stage detector basically formulates object detection as dense classification and
localization (i.e., bounding box regression). The classification is usually optimized
by Focal Loss and the box location is commonly learned under Dirac delta distribu-
tion. A recent trend for one-stage detectors is to introduce an individual prediction
branch to estimate the quality of localization, where the predicted quality facili-
tates the classification to improve detection performance. This paper delves into
the representations of the above three fundamental elements: quality estimation,
classification and localization. Two problems are discovered in existing practices,
including (1) the inconsistent usage of the quality estimation and classification
between training and inference, and (2) the inflexible Dirac delta distribution for
localization. To address the problems, we design new representations for these ele-
ments. Specifically, we merge the quality estimation into the class prediction vector
to form a joint representation, and use a vector to represent arbitrary distribution of
box locations. The improved representations eliminate the inconsistency risk and
accurately depict the flexible distribution in real data, but contain continuous labels,
which is beyond the scope of Focal Loss. We then propose Generalized Focal
Loss (GFL) that generalizes Focal Loss from its discrete form to the continuous
version for successful optimization. On COCO test-dev, GFL achieves 45.0%
AP using ResNet-101 backbone, surpassing state-of-the-art SAPD (43.5%) and
ATSS (43.6%) with higher or comparable inference speed.

1 Introduction

Recently, dense detectors have gradually led the trend of object detection. Based on dense detectors,
researchers focus more on the representation of bounding boxes and their localization quality
estimation, leading to an encouraging advancement [26, 29] in the field. Specifically, bounding box
representation is modeled as a simple Dirac delta distribution [10, 18, 32, 26, 31], which is widely
used over past years. As popularized in FCOS [26], predicting an additional localization quality (e.g.,
IoU score [29] or centerness score [26]) brings consistent improvements of detection accuracy, when
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Figure 1: Comparisons between existing separate representation and proposed joint representation of classification and localization quality
estimation. (a): Current practices [12, 26, 29, 35, 31] for the separate usage of the quality branch (i.e., IoU or centerness score) during training
and test. (b): Our joint representation of classification and localization quality enables high consistency between training and inference.

the quality estimation is combined (usually multiplied) with classification confidence as final scores
[12, 11, 26, 29, 35] for the rank process of Non-Maximum Suppression (NMS) during inference.
Despite their success, we observe the following problems in existing practices:

Inconsistent usage of localization quality estimation and classification score between training
and inference: (1) In recent dense detectors, the localization quality estimation and classification
score are usually trained independently but compositely utilized (e.g., multiplication) during inference
[26, 29] (Fig. 1(a)); (2) The supervision of the localization quality estimation is currently assigned
for positive samples only [12, 11, 26, 29, 35], which is unreliable as negatives may get chances
to have uncontrollably higher quality predictions (Fig. 2(a)). These two factors result in a gap
between training and test, and would potentially degrade the detection performance, e.g., negative
instances with randomly high-quality scores could rank in front of positive examples with lower
quality prediction during NMS.
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Figure 2: Unreliable IoU predictions of current dense detector with IoU-branch. (a):
We demonstrate some background patches (A and B) with extremely high predicted
quality scores (e.g., IoU score > 0.9), based on the optimized IoU-branch model in
Fig. 1(a). The scatter diagram in (b) denotes the randomly sampled instances with
their predicted scores, where the blue points clearly illustrate the weak correlation be-
tween predicted classification scores and predicted IoU scores for separate representa-
tions. The part in red circle contains many possible negatives with large localization
quality predictions, which may potentially rank in front of true positives and impair
the performance. Instead, our joint representation (green points) forces them to be
equal and thus avoids such risks.

Inflexible representation of bound-
ing boxes: The widely used bound-
ing box representation can be viewed
as Dirac delta distribution [7, 23, 8, 1,
18, 26, 13, 31] of the target box coordi-
nates. However, it fails to consider the
ambiguity and uncertainty in datasets
(see the unclear boundaries of the fig-
ures in Fig. 3). Although some recent
works [10, 4] model boxes as Gaus-
sian distributions, it is too simple to
capture the real distribution of the lo-
cations of bounding boxes. In fact,
the real distribution can be more ar-
bitrary and flexible [10], without the
necessity of being symmetric like the
Gaussian function.

To address the above problems, we design new representations for the bounding boxes and their
localization quality. For localization quality representation, we propose to merge it with the
classification score into a single and unified representation: a classification vector where its value
at the ground-truth category index refers to its corresponding localization quality (typically the IoU
score between the predicted box and the corresponding ground-truth box in this paper). In this way,
we unify classification score and IoU score into a joint and single variable (denoted as “classification-
IoU joint representation”), which can be trained in an end-to-end fashion, whilst directly utilized
during inference (Fig. 1(b)). As a result, it eliminates the training-test inconsistency (Fig. 1(b))
and enables the strongest correlation (Fig. 2 (b)) between localization quality and classification.
Further, the negatives will be supervised with 0 quality scores, thereby the overall quality predictions
become more confidential and reliable. It is especially beneficial for dense object detectors as they
rank all candidates regularly sampled across an entire image. For bounding box representation,
we propose to represent the arbitrary distribution (denoted as “General distribution” in this paper)
of box locations by directly learning the discretized probability distribution over its continuous
space, without introducing any other stronger priors (e.g., Gaussian [10, 4]). Consequently, we can
obtain more reliable and accurate bounding box estimations, whilst being aware of a variety of their
underlying distributions (see the predicted distributions in Fig. 3).

The improved representations then pose challenges for optimization. Traditionally for dense detectors,
the classification branch is optimized with Focal Loss [18] (FL). FL can successfully handles the
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Figure 3: Due to occlusion, shadow, blur, etc., the boundaries of many objects are not clear enough, so that the ground-truth labels (white
boxes) are sometimes not credible and Dirac delta distribution is limited to indicate such issues. Instead, the proposed learned representation
of General distribution for bounding boxes can re�ect the underlying information by its shape, where a �atten distribution denotes the unclear
and ambiguous boundaries (see red circles) and a sharp one stands for the clear cases. The predicted boxes by our model are marked green.

class imbalance problem via reshaping the standard cross entropy loss. However, for the case of the
proposed classi�cation-IoU joint representation, in addition to the imbalance risk that still exists, we
face a new problem with continuous IoU label (0� 1) as supervisions, as the original FL only supports
discretef 1; 0g category label currently. We successfully solve the problem by extending FL from
f 1; 0g discrete version to its continuous variant, termed Generalized Focal Loss (GFL). Different
from FL, GFL considers a much general case in which the globally optimized solution is able to target
at any desired continuous value, rather than the discrete ones. More speci�cally in this paper, GFL
can be specialized into Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), for optimizing
the improved two representations respectively: QFL focuses on a sparse set of hard examples and
simultaneously produces theircontinuous0� 1 quality estimations on the corresponding category;
DFL makes the network to rapidly focus on learning the probabilities of values around thecontinuous
locations of target bounding boxes, under an arbitrary and �exible distribution.

We demonstrate three advantages of GFL: (1) It bridges the gap between training and test when
one-stage detectors are facilitated with additional quality estimation, leading to a simpler, joint
and effective representation of both classi�cation and localization quality; (2) It well models the
�exible underlying distribution for bounding boxes, which provides more informative and accurate
box locations; (3) The performance of one-stage detectors can be consistently boosted without
introducing additional overhead. On COCOtest-dev , GFL achieves 45.0% AP with ResNet-101
backbone, surpassing state-of-the-art SAPD (43.5%) and ATSS (43.6%). Our best model can achieve
a single-model single-scale AP of 48.2% whilst running at 10 FPS on a single 2080Ti GPU.

2 Related Work

Representation of localization quality.Existing practices like Fitness NMS [27], IoU-Net [12], MS
R-CNN [11], FCOS [26] and IoU-aware [29] utilize a separate branch to perform localization quality
estimation in a form of IoU or centerness score. As mentioned in Sec. 1, this separate formulation
causes the inconsistency between training and test as well as unreliable quality predictions. Instead
of introducing an additional branch, PISA [2] and IoU-balance [28] assign different weights in the
classi�cation loss based on their localization qualities, aiming at enhancing the correlation between
the classi�cation score and localization accuracy. However, the weight strategy is of implicit and
limited bene�ts since it does not change the optimum of the loss objectives for classi�cation.

Representation of bounding boxes.Dirac delta distribution [7, 23, 8, 1, 18, 26, 13, 31] governs the
representation of bounding boxes over past years. Recently, Gaussian assumption [10, 4] is adopted
to learn the uncertainty by introducing a predicted variance. Unfortunately, existing representations
are either too rigid or too simpli�ed, which can not re�ect the complex underlying distribution in
real data. In this paper, we further relax the assumption and directly learn the more arbitrary, �exible
General distribution of bounding boxes, whilst being more informative and accurate.

3 Method

In this section, we �rst review the original Focal Loss [18] (FL) for learning dense classi�cation scores
of one-stage detectors. Next, we present the details for the improved representations of localization
quality estimation and bounding boxes, which are successfully optimized via the proposed Quality
Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively. Finally, we summarize the
formulations of QFL and DFL into a uni�ed perspective termed Generalized Focal Loss (GFL), as a
�exible extension of FL, to facilitate further promotion and general understanding in the future.
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Figure 4: The comparisons between conventional methods and our proposed GFL in the head of dense detectors. GFL includes QFL and DFL.
QFL effectively learns a joint representation of classi�cation score and localization quality estimation. DFL models the locations of bounding
boxes as General distributions whilst forcing the networks to rapidly focus on learning the probabilities of values close to the target coordinates.

Focal Loss (FL). The original FL [18] is proposed to address the one-stage object detection scenario
where an extreme imbalance between foreground and background classes often exists during training.
A typical form of FL is as follows (we ignore� t in original paper [18] for simplicity):

FL(p) = � (1 � pt )  log(pt ); pt =
�

p; when y = 1
1 � p; when y = 0 (1)

wherey 2 f 1; 0g speci�es the ground-truth class andp 2 [0; 1] denotes the estimated probability for
the class with labely = 1 .  is the tunable focusing parameter. Speci�cally, FL consists of a standard
cross entropy part� log(pt ) and a dynamically scaling factor part(1 � pt )  , where the scaling factor
(1 � pt )  automatically down-weights the contribution of easy examples during training and rapidly
focuses the model on hard examples.

Quality Focal Loss (QFL). To solve the aforementioned inconsistency problem between training and
test phases, we present a joint representation of localization quality (i.e., IoU score) and classi�cation
score (“classi�cation-IoU” for short), where its supervision softens the standard one-hot category
label and leads to a possible �oat targety 2 [0; 1] on the corresponding category (see the classi�cation
branch in Fig. 4). Speci�cally,y = 0 denotes the negative samples with 0 quality score, and0 < y � 1
stands for the positive samples with target IoU scorey. Note that the localization quality labely
follows the conventional de�nition as in [29, 12]: IoU score between the predicted bounding box
and its corresponding ground-truth bounding box during training, with a dynamic value being 0� 1.
Following [18, 26], we adopt the multiple binary classi�cation with sigmoid operators� (�) for
multi-class implementation. For simplicity, the output of sigmoid is marked as� .

Since the proposed classi�cation-IoU joint representation requires dense supervisions over an entire
image and the class imbalance problem still occurs, the idea of FL must be inherited. However,
the current form of FL only supportsf 1; 0g discrete labels, but our new labels contain decimals.
Therefore, we propose to extend the two parts of FL for enabling the successful training under the
case of joint representation: (1) The cross entropy part� log(pt ) is expanded into its complete
version�

�
(1 � y) log(1 � � ) + y log(� )

�
; (2) The scaling factor part(1 � pt )  is generalized into

the absolute distance between the estimation� and its continuous labely, i.e., jy � � j � (� � 0),
herej � j guarantees the non-negativity. Subsequently, we combine the above two extended parts to
formulate the complete loss objective, which is termed as Quality Focal Loss (QFL):

QFL(� ) = �
�
�y � �

�
� � �

(1 � y) log(1 � � ) + y log(� )
�
: (2)

Note that� = y is the global minimum solution of QFL. QFL is visualized for several values of
� in Fig. 5(a) under quality labely = 0 :5. Similar to FL, the term

�
�y � �

�
� �

of QFL behaves as a
modulating factor: when the quality estimation of an example is inaccurate and deviated away from
labely, the modulating factor is relatively large, thus it pays more attention to learning this hard
example. As the quality estimation becomes accurate, i.e.,� ! y, the factor goes to 0 and the loss for
well-estimated examples is down-weighted, in which the parameter� controls the down-weighting
rate smoothly (� = 2 works best for QFL in our experiments).

Distribution Focal Loss (DFL). Following [26, 31], we adopt the relative offsets from the location
to the four sides of a bounding box as the regression targets (see the regression branch in Fig. 4).
Conventional operations of bounding box regression model the regressed labely as Dirac delta
distribution� (x � y), where it satis�es

R+ 1
�1 � (x � y) dx = 1 and is usually implemented through
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Figure 5: (a): The illustration of QFL under quality labely = 0 :5. (b): Different �exible distributions can obtain the same integral target
according to Eq. (4), thus we need to focus on learning probabilities of values around the target for more reasonable and con�dent predictions
(e.g., (3)). (c): The histogram of bounding box regression targets of ATSS over all training samples on COCOtrainval35k .

Figure 6: Illustrations of modi�ed versions for separate/implicit and joint representation. The baseline without quality branch is also provided.

fully connected layers. More formally, the integral form to recovery is as follows:

y =
Z + 1

�1
� (x � y)x dx: (3)

According to the analysis in Sec. 1, instead of the Dirac delta [23, 8, 1, 26, 31] or Gaussian [4,
10] assumptions, we propose to directly learn the underlying General distributionP(x) without
introducing any other priors. Given the range of labely with minimumy0 and maximumyn (y0 �
y � yn ; n 2 N+ ), we can have the estimated valueŷ from the model (̂y also meetsy0 � ŷ � yn ):

ŷ =
Z + 1

�1
P(x)x dx =

Z yn

y0

P(x)x dx: (4)

To be consistent with convolutional neural networks, we convert the integral over the con-
tinuous domain into a discrete representation, via discretizing the range[y0; yn ] into a set
f y0; y1; :::; yi ; yi +1 ; :::; yn � 1; yn g with even intervals� , � = yi +1 � yi ; 8i 2 [0; n � 1] (we use
� = 1 for simplicity in later experiments). Consequently, given the discrete distribution propertyP n

i =0 P(yi ) = 1 , the estimated regression valueŷ can be presented as:

ŷ =
nX

i =0

P(yi )yi : (5)

As a result,P(x) can be easily implemented through a softmaxS(�) layer consisting ofn + 1 units,
with P(yi ) being denoted asSi for simplicity. Note that̂y can be trained in an end-to-end fashion
with traditional loss objectives like SmoothL1 [7], IoU Loss [27] or GIoU Loss [24]. However, there
are in�nite combinations of values forP(x) that can make the �nal integral result beingy, as shown
in Fig. 5(b), which may reduce the learning ef�ciency. Intuitively compared against (1) and (2),
distribution (3) is compact and tends to be more con�dent and precise on the bounding box estimation,
which motivates us to optimize the shape ofP(x) via explicitly encouraging the high probabilities
of values that are close to the targety. Furthermore, it is often the case that the most appropriate
underlying location, if exists, would not be far away from the coarse label. Therefore, we introduce
the Distribution Focal Loss (DFL) which forces the network to rapidly focus on the values near label
y, by explicitly enlarging the probabilities ofyi andyi +1 (nearest two toy, yi � y � yi +1 ). As the
learning of bounding boxes are only for positive samples without the risk of class imbalance problem,
we simply apply the complete cross entropy part in QFL for the de�nition of DFL:

DFL(Si ; Si +1 ) = �
�
(yi +1 � y) log(Si ) + ( y � yi ) log(Si +1 )

�
: (6)

Intuitively, DFL aims to focus on enlarging the probabilities of the values around targety (i.e.,yi and
yi +1 ). The global minimum solution of DFL, i.e,Si = y i +1 � y

y i +1 � y i
; Si +1 = y � y i

y i +1 � y i
, can guarantee the

estimated regression targetŷ in�nitely close to the corresponding labely, i.e., ŷ =
P n

j =0 P(yj )yj =

Si yi + Si +1 yi +1 = y i +1 � y
y i +1 � y i

yi + y � y i
y i +1 � y i

yi +1 = y, which also ensures its correctness as a loss
function.

Generalized Focal Loss (GFL).Note that QFL and DFL can be uni�ed into a general form, which
is called the Generalized Focal Loss (GFL) in the paper. Assume that a model estimates probabilities
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