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Abstract

One-stage detector basically formulates object detection as dense classification and
localization (i.e., bounding box regression). The classification is usually optimized
by Focal Loss and the box location is commonly learned under Dirac delta distribu-
tion. A recent trend for one-stage detectors is to introduce an individual prediction
branch to estimate the quality of localization, where the predicted quality facili-
tates the classification to improve detection performance. This paper delves into
the representations of the above three fundamental elements: quality estimation,
classification and localization. Two problems are discovered in existing practices,
including (1) the inconsistent usage of the quality estimation and classification
between training and inference, and (2) the inflexible Dirac delta distribution for
localization. To address the problems, we design new representations for these ele-
ments. Specifically, we merge the quality estimation into the class prediction vector
to form a joint representation, and use a vector to represent arbitrary distribution of
box locations. The improved representations eliminate the inconsistency risk and
accurately depict the flexible distribution in real data, but contain continuous labels,
which is beyond the scope of Focal Loss. We then propose Generalized Focal
Loss (GFL) that generalizes Focal Loss from its discrete form to the continuous
version for successful optimization. On COCO test-dev, GFL achieves 45.0%
AP using ResNet-101 backbone, surpassing state-of-the-art SAPD (43.5%) and
ATSS (43.6%) with higher or comparable inference speed.

1 Introduction

Recently, dense detectors have gradually led the trend of object detection. Based on dense detectors,
researchers focus more on the representation of bounding boxes and their localization quality
estimation, leading to an encouraging advancement [26, 29] in the field. Specifically, bounding box
representation is modeled as a simple Dirac delta distribution [10, 18, 32, 26, 31], which is widely
used over past years. As popularized in FCOS [26], predicting an additional localization quality (e.g.,
IoU score [29] or centerness score [26]) brings consistent improvements of detection accuracy, when
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Figure 1: Comparisons between existing separate representation and proposed joint representation of classification and localization quality
estimation. (a): Current practices [12, 26, 29, 35, 31] for the separate usage of the quality branch (i.e., IoU or centerness score) during training
and test. (b): Our joint representation of classification and localization quality enables high consistency between training and inference.

the quality estimation is combined (usually multiplied) with classification confidence as final scores
[12, 11, 26, 29, 35] for the rank process of Non-Maximum Suppression (NMS) during inference.
Despite their success, we observe the following problems in existing practices:

Inconsistent usage of localization quality estimation and classification score between training
and inference: (1) In recent dense detectors, the localization quality estimation and classification
score are usually trained independently but compositely utilized (e.g., multiplication) during inference
[26, 29] (Fig. 1(a)); (2) The supervision of the localization quality estimation is currently assigned
for positive samples only [12, 11, 26, 29, 35], which is unreliable as negatives may get chances
to have uncontrollably higher quality predictions (Fig. 2(a)). These two factors result in a gap
between training and test, and would potentially degrade the detection performance, e.g., negative
instances with randomly high-quality scores could rank in front of positive examples with lower
quality prediction during NMS.

A BB
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cls: 0.101 IoU: 0.913

(a) predicted classification score (cls) and predicted IoU score (IoU) (b) (c)

Figure 2: Unreliable IoU predictions of current dense detector with IoU-branch. (a):
We demonstrate some background patches (A and B) with extremely high predicted
quality scores (e.g., IoU score > 0.9), based on the optimized IoU-branch model in
Fig. 1(a). The scatter diagram in (b) denotes the randomly sampled instances with
their predicted scores, where the blue points clearly illustrate the weak correlation be-
tween predicted classification scores and predicted IoU scores for separate representa-
tions. The part in red circle contains many possible negatives with large localization
quality predictions, which may potentially rank in front of true positives and impair
the performance. Instead, our joint representation (green points) forces them to be
equal and thus avoids such risks.

Inflexible representation of bound-
ing boxes: The widely used bound-
ing box representation can be viewed
as Dirac delta distribution [7, 23, 8, 1,
18, 26, 13, 31] of the target box coordi-
nates. However, it fails to consider the
ambiguity and uncertainty in datasets
(see the unclear boundaries of the fig-
ures in Fig. 3). Although some recent
works [10, 4] model boxes as Gaus-
sian distributions, it is too simple to
capture the real distribution of the lo-
cations of bounding boxes. In fact,
the real distribution can be more ar-
bitrary and flexible [10], without the
necessity of being symmetric like the
Gaussian function.

To address the above problems, we design new representations for the bounding boxes and their
localization quality. For localization quality representation, we propose to merge it with the
classification score into a single and unified representation: a classification vector where its value
at the ground-truth category index refers to its corresponding localization quality (typically the IoU
score between the predicted box and the corresponding ground-truth box in this paper). In this way,
we unify classification score and IoU score into a joint and single variable (denoted as “classification-
IoU joint representation”), which can be trained in an end-to-end fashion, whilst directly utilized
during inference (Fig. 1(b)). As a result, it eliminates the training-test inconsistency (Fig. 1(b))
and enables the strongest correlation (Fig. 2 (b)) between localization quality and classification.
Further, the negatives will be supervised with 0 quality scores, thereby the overall quality predictions
become more confidential and reliable. It is especially beneficial for dense object detectors as they
rank all candidates regularly sampled across an entire image. For bounding box representation,
we propose to represent the arbitrary distribution (denoted as “General distribution” in this paper)
of box locations by directly learning the discretized probability distribution over its continuous
space, without introducing any other stronger priors (e.g., Gaussian [10, 4]). Consequently, we can
obtain more reliable and accurate bounding box estimations, whilst being aware of a variety of their
underlying distributions (see the predicted distributions in Fig. 3).

The improved representations then pose challenges for optimization. Traditionally for dense detectors,
the classification branch is optimized with Focal Loss [18] (FL). FL can successfully handles the
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Figure 3: Due to occlusion, shadow, blur, etc., the boundaries of many objects are not clear enough, so that the ground-truth labels (white
boxes) are sometimes not credible and Dirac delta distribution is limited to indicate such issues. Instead, the proposed learned representation
of General distribution for bounding boxes can reflect the underlying information by its shape, where a flatten distribution denotes the unclear
and ambiguous boundaries (see red circles) and a sharp one stands for the clear cases. The predicted boxes by our model are marked green.

class imbalance problem via reshaping the standard cross entropy loss. However, for the case of the
proposed classification-IoU joint representation, in addition to the imbalance risk that still exists, we
face a new problem with continuous IoU label (0∼1) as supervisions, as the original FL only supports
discrete {1, 0} category label currently. We successfully solve the problem by extending FL from
{1, 0} discrete version to its continuous variant, termed Generalized Focal Loss (GFL). Different
from FL, GFL considers a much general case in which the globally optimized solution is able to target
at any desired continuous value, rather than the discrete ones. More specifically in this paper, GFL
can be specialized into Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), for optimizing
the improved two representations respectively: QFL focuses on a sparse set of hard examples and
simultaneously produces their continuous 0∼1 quality estimations on the corresponding category;
DFL makes the network to rapidly focus on learning the probabilities of values around the continuous
locations of target bounding boxes, under an arbitrary and flexible distribution.

We demonstrate three advantages of GFL: (1) It bridges the gap between training and test when
one-stage detectors are facilitated with additional quality estimation, leading to a simpler, joint
and effective representation of both classification and localization quality; (2) It well models the
flexible underlying distribution for bounding boxes, which provides more informative and accurate
box locations; (3) The performance of one-stage detectors can be consistently boosted without
introducing additional overhead. On COCO test-dev, GFL achieves 45.0% AP with ResNet-101
backbone, surpassing state-of-the-art SAPD (43.5%) and ATSS (43.6%). Our best model can achieve
a single-model single-scale AP of 48.2% whilst running at 10 FPS on a single 2080Ti GPU.

2 Related Work

Representation of localization quality. Existing practices like Fitness NMS [27], IoU-Net [12], MS
R-CNN [11], FCOS [26] and IoU-aware [29] utilize a separate branch to perform localization quality
estimation in a form of IoU or centerness score. As mentioned in Sec. 1, this separate formulation
causes the inconsistency between training and test as well as unreliable quality predictions. Instead
of introducing an additional branch, PISA [2] and IoU-balance [28] assign different weights in the
classification loss based on their localization qualities, aiming at enhancing the correlation between
the classification score and localization accuracy. However, the weight strategy is of implicit and
limited benefits since it does not change the optimum of the loss objectives for classification.

Representation of bounding boxes. Dirac delta distribution [7, 23, 8, 1, 18, 26, 13, 31] governs the
representation of bounding boxes over past years. Recently, Gaussian assumption [10, 4] is adopted
to learn the uncertainty by introducing a predicted variance. Unfortunately, existing representations
are either too rigid or too simplified, which can not reflect the complex underlying distribution in
real data. In this paper, we further relax the assumption and directly learn the more arbitrary, flexible
General distribution of bounding boxes, whilst being more informative and accurate.

3 Method

In this section, we first review the original Focal Loss [18] (FL) for learning dense classification scores
of one-stage detectors. Next, we present the details for the improved representations of localization
quality estimation and bounding boxes, which are successfully optimized via the proposed Quality
Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively. Finally, we summarize the
formulations of QFL and DFL into a unified perspective termed Generalized Focal Loss (GFL), as a
flexible extension of FL, to facilitate further promotion and general understanding in the future.
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Figure 4: The comparisons between conventional methods and our proposed GFL in the head of dense detectors. GFL includes QFL and DFL.
QFL effectively learns a joint representation of classification score and localization quality estimation. DFL models the locations of bounding
boxes as General distributions whilst forcing the networks to rapidly focus on learning the probabilities of values close to the target coordinates.

Focal Loss (FL). The original FL [18] is proposed to address the one-stage object detection scenario
where an extreme imbalance between foreground and background classes often exists during training.
A typical form of FL is as follows (we ignore αt in original paper [18] for simplicity):

FL(p) = −(1− pt)γ log(pt), pt =
{

p, when y = 1
1− p, when y = 0

(1)

where y ∈ {1, 0} specifies the ground-truth class and p ∈ [0, 1] denotes the estimated probability for
the class with label y = 1. γ is the tunable focusing parameter. Specifically, FL consists of a standard
cross entropy part − log(pt) and a dynamically scaling factor part (1− pt)γ , where the scaling factor
(1− pt)γ automatically down-weights the contribution of easy examples during training and rapidly
focuses the model on hard examples.

Quality Focal Loss (QFL). To solve the aforementioned inconsistency problem between training and
test phases, we present a joint representation of localization quality (i.e., IoU score) and classification
score (“classification-IoU” for short), where its supervision softens the standard one-hot category
label and leads to a possible float target y ∈ [0, 1] on the corresponding category (see the classification
branch in Fig. 4). Specifically, y = 0 denotes the negative samples with 0 quality score, and 0 < y ≤ 1
stands for the positive samples with target IoU score y. Note that the localization quality label y
follows the conventional definition as in [29, 12]: IoU score between the predicted bounding box
and its corresponding ground-truth bounding box during training, with a dynamic value being 0∼1.
Following [18, 26], we adopt the multiple binary classification with sigmoid operators σ(·) for
multi-class implementation. For simplicity, the output of sigmoid is marked as σ.

Since the proposed classification-IoU joint representation requires dense supervisions over an entire
image and the class imbalance problem still occurs, the idea of FL must be inherited. However,
the current form of FL only supports {1, 0} discrete labels, but our new labels contain decimals.
Therefore, we propose to extend the two parts of FL for enabling the successful training under the
case of joint representation: (1) The cross entropy part − log(pt) is expanded into its complete
version −

(
(1− y) log(1− σ) + y log(σ)

)
; (2) The scaling factor part (1− pt)γ is generalized into

the absolute distance between the estimation σ and its continuous label y, i.e., |y − σ|β (β ≥ 0),
here | · | guarantees the non-negativity. Subsequently, we combine the above two extended parts to
formulate the complete loss objective, which is termed as Quality Focal Loss (QFL):

QFL(σ) = −
∣∣y − σ∣∣β((1− y) log(1− σ) + y log(σ)

)
. (2)

Note that σ = y is the global minimum solution of QFL. QFL is visualized for several values of
β in Fig. 5(a) under quality label y = 0.5. Similar to FL, the term

∣∣y − σ∣∣β of QFL behaves as a
modulating factor: when the quality estimation of an example is inaccurate and deviated away from
label y, the modulating factor is relatively large, thus it pays more attention to learning this hard
example. As the quality estimation becomes accurate, i.e., σ → y, the factor goes to 0 and the loss for
well-estimated examples is down-weighted, in which the parameter β controls the down-weighting
rate smoothly (β = 2 works best for QFL in our experiments).

Distribution Focal Loss (DFL). Following [26, 31], we adopt the relative offsets from the location
to the four sides of a bounding box as the regression targets (see the regression branch in Fig. 4).
Conventional operations of bounding box regression model the regressed label y as Dirac delta
distribution δ(x− y), where it satisfies

∫ +∞
−∞ δ(x− y) dx = 1 and is usually implemented through
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Figure 5: (a): The illustration of QFL under quality label y = 0.5. (b): Different flexible distributions can obtain the same integral target
according to Eq. (4), thus we need to focus on learning probabilities of values around the target for more reasonable and confident predictions
(e.g., (3)). (c): The histogram of bounding box regression targets of ATSS over all training samples on COCO trainval35k.
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Figure 6: Illustrations of modified versions for separate/implicit and joint representation. The baseline without quality branch is also provided.

fully connected layers. More formally, the integral form to recover y is as follows:

y =

∫ +∞

−∞
δ(x− y)x dx. (3)

According to the analysis in Sec. 1, instead of the Dirac delta [23, 8, 1, 26, 31] or Gaussian [4,
10] assumptions, we propose to directly learn the underlying General distribution P (x) without
introducing any other priors. Given the range of label y with minimum y0 and maximum yn (y0 ≤
y ≤ yn, n ∈ N+), we can have the estimated value ŷ from the model (ŷ also meets y0 ≤ ŷ ≤ yn):

ŷ =

∫ +∞

−∞
P (x)x dx =

∫ yn

y0

P (x)xdx. (4)

To be consistent with convolutional neural networks, we convert the integral over the con-
tinuous domain into a discrete representation, via discretizing the range [y0, yn] into a set
{y0, y1, ..., yi, yi+1, ..., yn−1, yn} with even intervals ∆, ∆ = yi+1 − yi,∀i ∈ [0, n − 1] (we use
∆ = 1 for simplicity in later experiments). Consequently, given the discrete distribution property∑n
i=0 P (yi) = 1, the estimated regression value ŷ can be presented as:

ŷ =

n∑
i=0

P (yi)yi. (5)

As a result, P (x) can be easily implemented through a softmax S(·) layer consisting of n+ 1 units,
with P (yi) being denoted as Si for simplicity. Note that ŷ can be trained in an end-to-end fashion
with traditional loss objectives like SmoothL1 [7], IoU Loss [27] or GIoU Loss [24]. However, there
are infinite combinations of values for P (x) that can make the final integral result being y, as shown
in Fig. 5(b), which may reduce the learning efficiency. Intuitively compared against (1) and (2),
distribution (3) is compact and tends to be more confident and precise on the bounding box estimation,
which motivates us to optimize the shape of P (x) via explicitly encouraging the high probabilities
of values that are close to the target y. Furthermore, it is often the case that the most appropriate
underlying location, if exists, would not be far away from the coarse label. Therefore, we introduce
the Distribution Focal Loss (DFL) which forces the network to rapidly focus on the values near label
y, by explicitly enlarging the probabilities of yi and yi+1 (nearest two to y, yi ≤ y ≤ yi+1). As the
learning of bounding boxes are only for positive samples without the risk of class imbalance problem,
we simply apply the complete cross entropy part in QFL for the definition of DFL:

DFL(Si,Si+1) = −
(
(yi+1 − y) log(Si) + (y − yi) log(Si+1)

)
. (6)

Intuitively, DFL aims to focus on enlarging the probabilities of the values around target y (i.e., yi and
yi+1). The global minimum solution of DFL, i.e, Si = yi+1−y

yi+1−yi ,Si+1 = y−yi
yi+1−yi , can guarantee the

estimated regression target ŷ infinitely close to the corresponding label y, i.e., ŷ =
∑n
j=0 P (yj)yj =

Siyi + Si+1yi+1 = yi+1−y
yi+1−yi yi +

y−yi
yi+1−yi yi+1 = y, which also ensures its correctness as a loss

function.

Generalized Focal Loss (GFL). Note that QFL and DFL can be unified into a general form, which
is called the Generalized Focal Loss (GFL) in the paper. Assume that a model estimates probabilities
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Type
FCOS [26] ATSS [31]

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL
w/o quality branch 37.8 56.2 40.8 21.2 42.1 48.2 38.0 56.5 40.7 20.6 42.1 49.1
centerness-branch [26] 38.5 56.8 41.6 22.4 42.4 49.1 39.2 57.4 42.2 23.0 42.8 51.1
IoU-branch [29, 12] 38.7 56.7 42.0 21.6 43.0 50.3 39.6 57.6 43.0 23.3 43.7 51.2
centerness-guided [28] 37.9 56.7 40.7 21.2 42.1 49.4 38.2 56.2 41.0 21.5 41.9 49.7
IoU-guided [28] 38.2 57.0 41.1 22.5 42.2 48.9 38.9 57.4 41.8 22.8 42.4 50.6
joint w/ QFL (ours) 39.0 57.8 41.9 22.0 43.1 51.0 39.9 58.5 43.0 22.4 43.9 52.7

(a) Comparisons between separate/implicit and joint representation (ours): The joint representation optimized by QFL achieves better performance than other
counterparts. We also observe that the quality predictions (especially IoU scores) are necessary for obtaining competitive AP.

Method AP AP50 AP75 APS APM APL
FoveaBox [13] 36.4 55.8 38.8 19.4 40.4 47.7
FoveaBox [13] + joint w/ QFL 37.0 55.7 39.6 20.2 41.2 48.8
RetinaNet [18] 35.6 55.5 38.1 20.1 39.4 46.8
RetinaNet [18] + joint w/ QFL 36.4 56.3 39.1 20.4 40.0 48.7
SSD512 [20] 29.4 49.1 30.6 11.4 34.1 44.9
SSD512 [20] + joint w/ QFL 30.2 50.3 31.7 13.3 34.4 45.5

(b) Applying joint representations with QFL to other one-stage detectors: About 0.6-0.8 % AP gains
are obtained without any additional overhead for inference.

β (QFL) AP AP50 AP75

0 37.6 55.4 40.3
1 39.0 58.1 41.7
2 39.9 58.5 43.0
2.5 39.7 58.1 42.7
4 38.2 55.4 41.6

(c) Varying β for QFL based on ATSS: β = 2 per-
forms best.

Table 1: Study on QFL (ResNet-50 backbone). All experiments are reproduced in mmdetection [3] and validated on COCO minival.

for two variables yl, yr(yl < yr) as pyl , pyr (pyl ≥ 0, pyr ≥ 0, pyl +pyr = 1), with a final prediction
of their linear combination being ŷ = ylpyl + yrpyr (yl ≤ ŷ ≤ yr). The corresponding continuous
label y for the prediction ŷ also satisfies yl ≤ y ≤ yr. Taking the absolute distance |y − ŷ|β (β ≥ 0)
as modulating factor, the specific formulation of GFL can be written as:

GFL(pyl , pyr ) = −
∣∣y − (ylpyl + yrpyr )

∣∣β((yr − y) log(pyl) + (y − yl) log(pyr )
)
. (7)

Properties of GFL. GFL(pyl , pyr ) reaches its global minimum with p∗yl = yr−y
yr−yl , p

∗
yr = y−yl

yr−yl ,
which also means that the estimation ŷ perfectly matches the continuous label y, i.e., ŷ = ylp

∗
yl
+

yrp
∗
yr = y. Obviously, FL [18] and the proposed QFL and DFL are all special cases of GFL:

• FL: Letting β = γ, yl = 0, yr = 1, pyr = p, pyl = 1− p and y ∈ {1, 0} in GFL:
FL(p) = GFL(1− p, p) = −

∣∣y − p∣∣γ((1− y) log(1− p) + y log(p)
)
, y ∈ {1, 0}

= −(1− pt)γ log(pt), pt =
{

p, when y = 1
1− p, when y = 0

(8)

• QFL: Having yl = 0, yr = 1, pyr = σ and pyl = 1− σ in GFL:
QFL(σ) = GFL(1− σ, σ) = −

∣∣y − σ∣∣β((1− y) log(1− σ) + y log(σ)
)
. (9)

• DFL: By substituting β = 0, yl = yi, yr = yi+1, pyl = P (yl) = P (yi) = Si, pyr =
P (yr) = P (yi+1) = Si+1 in GFL:

DFL(Si,Si+1) = GFL(Si,Si+1) = −
(
(yi+1 − y) log(Si) + (y − yi) log(Si+1)

)
. (10)

Note that GFL can be applied to any one-stage detectors. The modified detectors differ from the
original detectors in two aspects. First, during inference, we directly feed the classification score
(joint representation with quality estimation) as NMS scores without the need of multiplying any
individual quality prediction if there exists (e.g., centerness as in FCOS [26] and ATSS [31]). Second,
the last layer of the regression branch for predicting each location of bounding boxes now has n+ 1
outputs instead of 1 output, which brings negligible extra computing cost as later shown in Table 3.

Training Dense Detectors with GFL. We define training loss L with GFL:

L =
1

Npos

∑
z

LQ +
1

Npos

∑
z

1{c∗z>0}
(
λ0LB + λ1LD

)
, (11)

where LQ is QFL and LD is DFL. Typically, LB denotes the GIoU Loss as in [26, 31]. Npos stands
for the number of positive samples. λ0 (typically 2 as default, similarly in [3]) and λ1 (practically 1

4 ,
averaged over four directions) are the balance weights for LQ and LD, respectively. The summation
is calculated over all locations z on the pyramid feature maps [17]. 1{c∗z>0} is the indicator function,
being 1 if c∗z > 0 and 0 otherwise. Following the common practices in the official codes [3, 26, 31, 15],
we also utilize the quality scores to weight LB and LD during training.
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Prior Distribution
FCOS [26] ATSS [31]

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL
Dirac delta [26, 31] 38.5 56.8 41.6 22.4 42.4 49.1 39.2 57.4 42.2 23.0 42.8 51.1
Gaussian [10, 4] 38.6 56.5 41.6 21.7 42.5 50.0 39.3 57.0 42.4 23.6 42.9 51.0
General (ours) 38.8 56.6 42.0 22.5 42.9 49.8 39.3 57.1 42.5 23.5 43.0 51.2
General w/ DFL (ours) 39.0 57.0 42.3 22.6 43.0 50.6 39.5 57.3 42.8 23.6 43.2 51.2

(a) Performances under different data representation of bounding box regression targets: the proposed General distribution supervised by DFL improves favor-
ably over the competitive baselines.

n ∆ AP AP50 AP75 APS APM APL
12

1

40.1 58.4 43.1 23.1 43.8 52.5
14 40.2 58.3 43.6 23.3 44.2 52.2
16 40.2 58.6 43.4 23.0 44.3 53.0
18 40.1 58.1 43.1 22.6 43.9 52.6

(b) Varying n by fixing ∆ = 1 on ATSS (w/ GFL): The performance is
robust to a range of n according to its target distribution in Fig. 5(c).

yn ∆ AP AP50 AP75 APS APM APL

16

0.5 40.2 58.4 43.0 22.3 43.8 53.1
1 40.2 58.6 43.4 23.0 44.3 53.0
2 39.9 58.3 42.9 22.5 43.8 51.8
4 39.8 58.5 42.8 22.8 43.4 52.3

(c) Varying∆ by fixing yn = 16 on ATSS (w/ GFL): Small∆ usually leads
to better performance whilst∆ = 1 is good enough for practice.

Table 2: Study on DFL (ResNet-50 backbone). All experiments are reproduced in mmdetection [3] and validated on COCO minival.

4 Experiment

Our experiments are conducted on COCO benchmark [19], where trainval35k (115K images) is
utilized for training and we use minival (5K images) as validation for our ablation study. The main
results are reported on test-dev (20K images) which can be obtained from the evaluation server. For
fair comparisons, all results are produced under mmdetection [3], where the default hyper-parameters
are adopted. Unless otherwise stated, we adopt 1x learning schedule (12 epochs) without multi-scale
training for the following studies, based on ResNet-50 [9] backbone.

We first investigate the effectiveness of the QFL (Table 1). In Table 1(a), we compare the proposed
joint representation with its separate or implicit counterparts. Two alternatives for representing

A BB

A cls: 0.095 IoU: 0.927

cls: 0.101 IoU: 0.913

(a) predicted classification score (cls) and predicted IoU score (IoU) (b) (c)
Figure 7: Single-model single-scale speed (ms) vs. accuracy
(AP) on COCO test-dev among state-of-the-art approaches.
GFL achieves better speed-accuracy trade-off than many com-
petitive counterparts.

localization quality: IoU [29, 12] and centerness
[26, 31] are also adopted in the experiments. In gen-
eral, we construct 4 variants that use separate or im-
plicit representation, as illustrated in Fig. 6. According
to the results, we observe that the joint representations
optimized by QFL consistently achieve better perfor-
mance than all the counterparts, whilst IoU always
performs better than centerness as a measurement of
localization quality (see more analyses in Sec. 5). Ta-
ble 1(b) shows that QFL can also boost the perfor-
mance of other popular one-stage detectors, and Ta-
ble 1(c) shows that β = 2 is the best setting for QFL.
We illustrate the effectiveness of joint representation
by sampling instances with its predicted classification
and IoU scores of both IoU-branch model and ours, as
shown in Fig. 2(b). It demonstrates that the proposed
joint representation trained with QFL can benefit the detection due to its more reliable quality esti-
mation, and yields the strongest correlation between classification and quality scores according to
its definition. In fact, in our joint representation, the predicted classification score is equal to the
estimated quality score exactly.

QFL DFL FPS AP AP50 AP75

19.4 39.2 57.4 42.2
X 19.4 39.9 58.5 43.0

X 19.4 39.5 57.3 42.8
X X 19.4 40.2 58.6 43.4

Table 3: The effect of QFL and DFL on ATSS: The
effects of QFL and DFL are orthogonal, whilst utilizing
both can boost 1% AP over the strong ATSS baseline,
without introducing additional overhead practically.

Second, we investigate the effectiveness of the DFL (Ta-
ble 2). To quickly select a reasonable value of n, we
first illustrate the distribution of the regression targets in
Fig. 5(c). We will show in later experiments, the recom-
mended choice of n for ATSS is 14 or 16. In Table 2(a), we
compare the effectiveness of different data representations
for bounding box regression. We find that the General dis-
tribution achieves superior or at least comparable results,
whilst DFL can further boost its performance. Based on
the improved ATSS trained by GFL, we report the effect of

n and ∆ in DFL in Table 2(b) and (c). The results demonstrate that the selection of n is not sensitive
and ∆ is suggested to be small (e.g., 1) in practice. To illustrate the effect of General distribution, we
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Method Backbone Epoch MStrain FPS AP AP50 AP75 APS APM APL Reference
multi-stage:
Faster R-CNN w/ FPN [17] R-101 24 14.2 36.2 59.1 39.0 18.2 39.0 48.2 CVPR17
Cascade R-CNN [1] R-101 18 11.9 42.8 62.1 46.3 23.7 45.5 55.2 CVPR18
Grid R-CNN [21] R-101 20 11.4 41.5 60.9 44.5 23.3 44.9 53.1 CVPR19
Libra R-CNN [22] R-101 24 13.6 41.1 62.1 44.7 23.4 43.7 52.5 CVPR19
Libra R-CNN [22] X-101-64x4d 12 8.5 43.0 64.0 47.0 25.3 45.6 54.6 CVPR19
RepPoints [30] R-101 24 13.3 41.0 62.9 44.3 23.6 44.1 51.7 ICCV19
RepPoints [30] R-101-DCN 24 X 11.8 45.0 66.1 49.0 26.6 48.6 57.5 ICCV19
TridentNet [16] R-101 24 X 2.7∗ 42.7 63.6 46.5 23.9 46.6 56.6 ICCV19
TridentNet [16] R-101-DCN 36 X 1.3∗ 46.8 67.6 51.5 28.0 51.2 60.5 ICCV19
TSD [25] R-101 20 1.1 43.2 64.0 46.9 24.0 46.3 55.8 CVPR20

one-stage:
CornerNet [14] HG-104 200 X 3.1∗ 40.6 56.4 43.2 19.1 42.8 54.3 ECCV18
CenterNet [6] HG-52 190 X 4.4∗ 41.6 59.4 44.2 22.5 43.1 54.1 ICCV19
CenterNet [6] HG-104 190 X 3.3∗ 44.9 62.4 48.1 25.6 47.4 57.4 ICCV19
CentripetalNet [5] HG-104 210 X n/a 45.8 63.0 49.3 25.0 48.2 58.7 CVPR20
RetinaNet [18] R-101 18 13.6 39.1 59.1 42.3 21.8 42.7 50.2 ICCV17
FreeAnchor [32] R-101 24 X 12.8 43.1 62.2 46.4 24.5 46.1 54.8 NeurIPS19
FreeAnchor [32] X-101-32x8d 24 X 8.2 44.9 64.3 48.5 26.8 48.3 55.9 NeurIPS19
FoveaBox [13] R-101 18 X 13.1 40.6 60.1 43.5 23.3 45.2 54.5 –
FoveaBox [13] X-101 18 X n/a 42.1 61.9 45.2 24.9 46.8 55.6 –
FSAF [34] R-101 18 X 15.1 40.9 61.5 44.0 24.0 44.2 51.3 CVPR19
FSAF [34] X-101-64x4d 18 X 9.1 42.9 63.8 46.3 26.6 46.2 52.7 CVPR19
FCOS [26] R-101 24 X 14.7 41.5 60.7 45.0 24.4 44.8 51.6 ICCV19
FCOS [26] X-101-64x4d 24 X 8.9 44.7 64.1 48.4 27.6 47.5 55.6 ICCV19
SAPD [33] R-101 24 X 13.2 43.5 63.6 46.5 24.9 46.8 54.6 CVPR20
SAPD [33] X-101-32x4d 24 X 10.7 44.5 64.7 47.8 26.5 47.8 55.8 CVPR20
SAPD [33] R-101-DCN 24 X 11.1 46.0 65.9 49.6 26.3 49.2 59.6 CVPR20
SAPD [33] X-101-32x4d-DCN 24 X 8.8 46.6 66.6 50.0 27.3 49.7 60.7 CVPR20
ATSS [31] R-101 24 X 14.6 43.6 62.1 47.4 26.1 47.0 53.6 CVPR20
ATSS [31] X-101-32x8d 24 X 8.9 45.1 63.9 49.1 27.9 48.2 54.6 CVPR20
ATSS [31] R-101-DCN 24 X 12.7 46.3 64.7 50.4 27.7 49.8 58.4 CVPR20
ATSS [31] X-101-32x8d-DCN 24 X 6.9 47.7 66.6 52.1 29.3 50.8 59.7 CVPR20
GFL (ours) R-50 24 X 19.4 43.1 62.0 46.8 26.0 46.7 52.3 –
GFL (ours) R-101 24 X 14.6 45.0 63.7 48.9 27.2 48.8 54.5 –
GFL (ours) X-101-32x4d 24 X 12.2 46.0 65.1 50.1 28.2 49.6 56.0 –
GFL (ours) R-101-DCN 24 X 12.7 47.3 66.3 51.4 28.0 51.1 59.2 –
GFL (ours) X-101-32x4d-DCN 24 X 10.0 48.2 67.4 52.6 29.2 51.7 60.2 –

Table 4: Comparisons between state-of-the-art detectors (single-model and single-scale results) on COCO test-dev. “MStrain” denotes multi-
scale training. FPS values with ∗ are from [33], while others are measured on the same machine with a single GeForce RTX 2080Ti GPU under
the same mmdetection [3] framework, using a batch size of 1 whenever possible. “n/a” means that both trained models and timing results from
original papers are not available. R: ResNet. X: ResNeXt. HG: Hourglass. DCN: Deformable Convolutional Network.

plot several representative instances with its distributed bounding box over four directions in Fig. 3,
where the proposed distributed representation can effectively reflect the uncertainty of bounding
boxes by its shape.

Third, we perform the ablation study on ATSS with ResNet-50 backbone to show the relative
contributions of QFL and DFL (Table 3). FPS (Frames-per-Second) is measured on the same machine
with a single GeForce RTX 2080Ti GPU using a batch size of 1 under the same mmdetection [3]
framework. We observe that the improvement of DFL is orthogonal to QFL, and joint usage of both
(i.e., GFL) improves the strong ATSS baseline by absolute 1% AP score. Furthermore, according to
the inference speeds, GFL brings negligible additional overhead and is considered very practical.

Finally, we compare GFL (based on ATSS) with state-of-the-art approaches on COCO test-dev
in Table 4. Following previous works [18, 26], the multi-scale training strategy and 2x learning
schedule (24 epochs) are adopted during training. For a fair comparison, we report the results of
single-model single-scale testing for all methods, as well as their corresponding inference speeds
(FPS). GFL with ResNet-101 [9] achieves 45.0% AP at 14.6 FPS, which is superior than all the
existing detectors with the same backbone, including SAPD [33] (43.5%) and ATSS [31] (43.6%).
Further, Deformable Convolutional Networks (DCN) [36] consistently boost the performances over
ResNe(X)t backbones, where GFL with ResNeXt-101-32x4d-DCN obtains state-of-the-art 48.2%
AP at 10 FPS. Fig. 7 demonstrates the visualization of the accuracy-speed trade-off, where it can be
observed that our proposed GFL pushes the envelope of accuracy-speed boundary to a high level.
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5 Analysis

The ablation study Table 1 also demonstrates that for FCOS/ATSS, IoU performs consistently better
than centerness, as a measurement of localization quality. Here we give a convincing reason why this
is the case. We discover the major problem of centerness is that its definition leads to unexpected
small ground-truth label, which makes a possible set of ground-truth bounding boxes extremely
hard to be recalled (as shown in Fig. 8). From the label distributions demonstrated in Fig. 9, we
observe that most of IoU labels is larger than 0.4 yet centerness labels tend to be much smaller (even
approaching 0). The small values of centerness labels prevent a set of ground-truth bounding boxes
from being recalled, as their final scores for NMS would be potentially small since their predicted
centerness scores are already supervised by these extremely small signals.

centerness label = 0.1
IoU label > 0.4 (usually)

ground-truth bounding box predicted bounding box positive point 

centerness as measurement: IoU as measurement:

mmdet/models/anchor_heads/atsssmcsc_head.py

Figure 8: We demonstrate possible cases of ground-truth/predicted bounding box along with the positive points. The matrix points denote the
feature pyramid layer with stride = 8. Centerness label is easier to get very small values by its definition, whilst IoU label is more reliable as
the supervisions from bounding boxes will always push it close to 1.0.
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Figure 9: Label distributions over all positive training samples on COCO, based on pretrained GFL detector (ResNet-50 backbone).

6 Conclusion

To effectively learn qualified and distributed bounding boxes for dense object detectors, we propose
Generalized Focal Loss (GFL) that generalizes the original Focal Loss from {1, 0} discrete formula-
tion to the continuous version. GFL can be specialized into Quality Focal loss (QFL) and Distribution
Focal Loss (DFL), where QFL encourages to learn a better joint representation of classification and
localization quality, and DFL provides more informative and precise bounding box estimations by
modeling their locations as General distributions. We also provide a convincing reason and suggest
that the community should use IoU instead of centerness as quality measurement although centerness
is very successful in FCOS and ATSS. Extensive experiments validate the effectiveness of GFL. We
hope GFL can serve as a simple yet effective baseline for the community.
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Broader Impact

Superior performances for object detection tasks indeed have some societal consequences. Specifically
for our work, we push the boundary of accuracy-speed for dense detectors to a new level by generating
a fast and also accurate object detector. The improved detector can have benefits for a range of
fields that involves object recognition tasks, e.g., vision-based self-driving or visual navigation, to
avoid accidents and ensure human safety. Further, the ideas of (1) improving representations via
a joint formulation for classification and localization quality and (2) directly learning the arbitrary
distribution of box locations potentially demonstrate many insights and can inspire more thinking on
the representation learning of the computer vision community. Finally, the technique in this paper
has no obvious negative ethical and harmful social impact.
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