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Humans have an exceptional ability to extract specific audio streams
of interest in a noisy environment; this is known as the cocktail party
effect. It is widely accepted that this ability is related to selective at-
tention, a mental process that enables individuals to focus on a partic-
ular object. Evidence suggests that sensory neurons can be modulated by
top-down signals transmitted from the prefrontal cortex. However, ex-
actly how the projection of attention signals to the cortex and subcortex
influences the cocktail effect is unclear. We constructed computational
models to study whether attentional modulation is more effective at ear-
lier or later stages for solving the cocktail party problem along the au-
ditory pathway. We modeled the auditory pathway using deep neural
networks (DNNs), which can generate representational neural patterns
that resemble the human brain. We constructed a series of DNN models
in which the main structures were autoencoders. We then trained these
DNNs on a speech separation task derived from the dichotic listening
paradigm, a common paradigm to investigate the cocktail party effect.
We next analyzed the modulation effects of attention signals during all
stages. Our results showed that the attentional modulation effect is more
effective at the lower stages of the DNNs. This suggests that the pro-
jection of attention signals to lower stages within the auditory pathway
plays a more significant role than the higher stages in solving the cocktail
party problem. This prediction could be tested using neurophysiological
experiments.

1 Introduction

The ability of humans to separate audio streams of interest under an acous-
tically challenging environment is important for daily life and is termed the
cocktail party effect (Cherry, 1953). The overlapping nature of the various
sounds in spectrotemporal space makes the speech separation task com-
putationally challenging (Brungart, Simpson, Ericson, & Scott, 2001; Zion
Golumbic et al., 2013). Although it is widely accepted that selective atten-
tion enables animals to segregate and regroup overlapping audio streams
(Alain, 2000; Bregman & McAdams, 1994), scientists have not reached a
consensus regarding the impact of attention on different processing stages.
Several studies have suggested that attentional modulation reaches the
early stages when information is processed within the sensory cortex. One
study found that the impact of attention can be traced along the neuronal
activity of the cochlea (Maison, Micheyl, & Collet, 2001). Consistent with
this study, animal research has revealed that separation of the sound stream
occurs before the cortical stage (Nakamoto, Jones, & Palmer, 2008; Slee &
David, 2015). Furthermore, studies on human speech processing have in-
dicated that attention enhances neural processing prior to the cortex stage
(Price & Bidelman, 2021; Rinne et al., 2008).
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Neural Network Analysis of the Cocktail Party Effect 2275

However, numerous studies have also indicated that both the primary
and secondary auditory cortices play a major role in the speech separation
task (Ding & Simon, 2012; Fritz, Shamma, Elhilali, & Klein, 2003; Mesgarani
& Chang, 2012; Zion Golumbic et al., 2013). Therefore, these findings sug-
gest that cortical and subcortical areas carry distinct responsibilities during
the speech separation task (Deutsch & Deutsch, 1963; Wittekindt, Kaiser,
& Abel, 2014). Exactly how attention affects different auditory processing
stages remains to be explored.

Many studies have compared artificial neural networks and real brains
and found that well-trained deep neural networks (DNNs) excel at pre-
dicting the neural responses of living creatures (Banino et al., 2018; Cadieu
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, McClure, &
Kriegeskorte, 2019; Prokott et al., 2021; Yamins & DiCarlo, 2016). A previous
study (Khaligh-Razavi & Kriegeskorte, 2014) showed that DNNs trained
on object recognition tasks demonstrate rivaling neural representations in
the inferior temporal cortex. Moreover, a study on mice navigation (Banino
et al., 2018) found that a neural network trained on data collected from liv-
ing mice showed a similar pattern as that of the mouse hippocampus. Some
recent studies have extended these studies by inferring real brain functions
through the dissection of neural networks that show similar task perfor-
mance as that of humans (Prokott, Tamura, & Fleming, 2021; Saiz-Alía &
Reichenbach, 2020).

In our study, we used a series of DNN models to investigate attentional
modulation mechanisms. The backbone of the DNN was a multilayered au-
toencoder. The task is to separate two individual speeches from their mix-
ture with selective attention (see Figure 1A). An autoencoder consists of an
encoder and a decoder connected by shortcut pathways. This structure was
inspired by the Unet (Ronneberger, Fischer, & Brox, 2015). Within the en-
coder and decoder, the basic building blocks were ResBlocks (He, Zhang,
Ren, & Sun, 2016), ResTranspose, and downsampling convolutional layers.
Using these DNNs, we aimed to determine which stages in the auditory
pathway play a more significant role in solving the cocktail party effect.
Our supervised deep convolutional neural networks were optimized to-
ward solving the dichotic listening task, a classical experimental paradigm
that is widely used for studying selective attention. In the first stage, we
trained the model to demonstrate performance on a speech separation task
that rivals that of electrophysiological experiments (Mesgarani & Chang,
2012). Subsequently, we compared the effects of attentional modulation on
different stages. To exclude the effects of confounding factors, we trained a
series of DNN models using varied metaparameters.

2 Method

2.1 Model Structure. Our model consisted of three components: a deep
autoencoder (ResUnet), a speaker feature extraction network (FeatureNet),
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2276 T. Y. Kuo et al.

Figure 1: Description of the task and model structure. (A) Illustration of the
task. (B) Model structure of a six-stage ResUnet example. S1 to S6: stages in
the encoder. S1’ to S6’: the corresponding stages in the decoder. The shape of
each stage’s output is labeled next to each stage and is presented as channel
× height × width. The right part of the model illustrates the three basic
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Neural Network Analysis of the Cocktail Party Effect 2277

and a network simulating attentional modulation (AttentionNet). Figure
1B illustrates the model structure and basic modules. The encoder was de-
signed to correspond to the ascending auditory pathway and was aimed
at learning the hierarchical representation of speech. Inputs were down-
sampled and reshaped repeatedly and then passed on to the decoder. The
structure of the decoder was similar to the encoder and was designed to
decode the target spectrogram, as described in a previous human physiol-
ogy study (Mesgarani & Chang, 2012). It did not necessarily correspond to
any biological structures. Although the decoder is not the focus of this let-
ter, we considered the possibility that the effect of speech recovery might
vary depending on the decoder structure. We designed multiple decoder
variants to make the experiments more compact and used the clean target
spectrogram as the ground truth for recovery.

2.2 ResUnet. ResUnet was the main structure in our model and is an
encoder-decoder model adapted from ResNet and Unet (Ronneberger et al.,
2015). The stages of the encoder were denoted as Si, i = 1, 2, . . . , n, and the
stages of the decoder were denoted as S′

i, i = 1, 2, . . . , n. The encoder and
decoder were designed to be structurally symmetrical. Each of the residual
stages in the encoder consisted of a downsampling 2D convolutional layer
(except S1, which does not downsample), k ResBlocks (k = 1, 2, 3), and a
pooling layer.

A decoder is designed to decode feature maps at various encoder stages
and recover input spectrograms. Each decoder stage includes multiple Res-
Blocks (denoted as m, where m = 0, k) and one transposed convolutional
layer (except S′

1) to increase the size of the feature maps.
Inspired by the previous work of ResNet (He et al., 2016), we defined

ResBlock and ResTranspose modules as the two basic building blocks of our
model. The ResBlock module has a convolutional pathway and a residual
pathway. For the convolutional pathway, we first applied a convolutional
layer, which was followed by batch normalization and a rectified linear unit
(ReLU) operation. The second convolutional layer and batch normalization
were subsequently applied.

The output of the residual pathway could be a copy of the feature maps
or an input tensor with a 1 × 1 convolution filter. If the output has the same

components applied to the model: ResBlock, ResBlock (preserved channel), and
ResTranspose. The “conv 3 × 3, [ch]” flag denotes a convolutional layer with
kernel size = (3, 3), stride = 1, padding = 1, output channel = ch; the “conv 2 ×
2, [ch]” flag denotes a downsize convolution with kernel size = (2, 2), stride =
2, padding = 0, output channel = ch; the “transpose 2 × 2 [ch]” flag denotes a
transpose layer with kernel size = (2, 2), stride = 2, padding = 0, output chan-
nel = ch; the “conv 1 × 1 [ch]” flag denotes a convolutional layer with kernel
size = (1, 1), stride = 1, padding = 0, output channel = ch.
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2278 T. Y. Kuo et al.

Table 1. Structure of the FeatureNet.

LSTM Layer FC Layer(
LSTM

256, 768

)
× 3

(
FC

768, 256

)

Notes: The structure of the FeatureNet
has three long short-term memory
(LSTM) modules followed by one fully
connected (FC) layer. The numbers
specify the number of input and output
channels.

channel number as that of the input, the residual pathway goes with the
former condition. However, if the output has a different channel number
from that of the input, the residual pathway goes with the latter condition.
The outputs of the two pathways are then added and rectified using ReLU,
which results in the final output of the ResBlock.

Similar to the ResBlock, the ResTranspose module has dual pathways. In
the convolutional pathway, we replaced the first convolution with a trans-
posed convolutional layer to upsample the input tensor. The transposed
convolution was followed by batch normalization and a ReLU operation.
In the residual pathway, the input feature map was upsampled by a scale
factor of 2. Channels remained equal for both the input and output of the
ResTranspose module. The structures of the ResBlock and ResTranspose are
described in Figure 1B.

2.3 FeatureNet. The structure of the FeatureNet was inspired by pre-
vious work (Wan, Wang, Papir, & Moreno, 2018). It included three long
short-term memory network (LSTM; Sundermeyer, Schlüter, & Ney, 2012)
modules and a fully connected (FC layer), which converted the output from
LSTM into speech embeddings (256 in our experiment). Inputs for the Fea-
tureNet first underwent a mel-frequency transformation to obtain better
audio feature representations. The FeatureNet was trained using the cross-
entropy loss function. Parameters of an example FeatureNet are provided
in Table 1.

2.4 AttentionNet. The purpose of the AttentionNet was to convert the
audio features of the target speaker into attention signals and project the
converted signals to the encoder stages in ResUnet. The AttentionNet re-
ceives a single vector input from the FeatureNet and outputs n attention
signal vectors. The n outputs were obtained using n FC layers. All FC lay-
ers took the speech feature vector as the input. For instance, in a model
with n = 6, six independent FC layers would all receive the same embedded
feature from the FeatureNet and output n attention signals. Each attention
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Neural Network Analysis of the Cocktail Party Effect 2279

vector matches the output feature map at each corresponding stage along
the channel and frequency dimensions. For example, if the S2 encoder stage
outputs 128 × 64 × 16-dimensional (using a spectral × temporal × channel-
notation manner) feature maps, it would receive signals with a dimension
of 128 × 1 × 16.

2.5 Training Procedures. The model was changed with three proce-
dures. First, we trained the FeatureNet to extract auditory features from
the target speaker. The FeatureNet was trained on a binary classification
task that was aimed at differentiating between the target speaker and the
masker speaker. After training, we extracted the last hidden layer as a vec-
torized representation of the target’s auditory features. Second, we trained
the ResUnet on the clean speech data set. Here, the goal of the ResUnet was
to learn to recover an input spectrogram with minimal distortion by mini-
mizing the loss function

∑
x

∣∣|x − decoder(encoder(x))|∣∣2
2, where x denotes

a training speech sample represented in the form of a spectrogram. Finally,
we trained the full model with all three components, with the mixed input,
x = x1 + x2, where x1 and x2 represent the speech of the two speakers. If the
attention signal ai was applied to speaker i, we minimized the loss function∑

x

∣∣|xi − decoder(encoderai (x))|∣∣2
2, where encoderai (x) stands for the output

of the encoder with attention ai.

3 Experimental Settings

Our experimental setting was the dichotic listening paradigm, a commonly
adapted experimental framework for cocktail party effect studies (Cherry,
1953; Ding & Simon, 2012; Mesgarani & Chang, 2012; O’Sullivan et al., 2019;
Woldorff et al., 1993; Zion Golumbic et al., 2013). The experimenter broad-
cast voices from two separate channels: speaker 1 (SP1) and speaker 2 (SP2).
Usually one channel is assigned as the target and the other as the masker,
and participants are required to attend to one of the speech channels while
simultaneously receiving input from both audio channels. We generated
our data set by overlapping the voices from SP1 and SP2. The goals for our
models were to separate the voices between the target and the masker and
reconstruct a clean spectrogram without the masker’s voice.

The source code is publicly available at https://github.com/liaoyd16/
cocktail_lk.

3.1 Data Set Generation. We generated a clean speech data set from
multiple recordings of a selected male and female. The recordings were
segmented into 4-second clips and transformed into 256 × 128 sized spec-
trograms as the model input. To obtain the spectrogram, we applied a short-
time Fourier transform and a base 10 logarithm to the spectrogram. The
frequency domain of 200 Hz to 3000 Hz was retained to maintain focus
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2280 T. Y. Kuo et al.

on the human listening domain. Approximately 92.6% of the data (3239
samples) was used for training, and the remaining data were used for test-
ing (240 samples). One clip from SP1 and another from SP2 were left out
for the generation of speaker embeddings, which were the inputs for the
FeatureNet.

For the dichotic listening paradigm, we created an additional data set
of mixed speech. Each data entry was obtained by directly combining two
spectrograms. The spectrograms were randomly sampled from the pool of
audio clips.

All speech materials were taken from the LibriVox recording (LibriVox,
2014).

3.2 Performance Evaluation. To evaluate recovery performance, we
used the mean squared error distance between the original and recon-
structed spectrograms as the loss function of the models. We also calculated
the attentional modulation index (AMI), as proposed in a previous study
(Mesgarani & Chang, 2012), to quantify the effects of attention. AMI was
calculated using the correlations of the target, masker, and reconstructed
spectrograms:

AMIspec = Corr
(
SP1spec, SP1att

) − Corr
(
SP1spec, SP2att

)
+ Corr

(
SP2spec, SP2att

) − Corr
(
SP2spec, SP1att

)
, (3.1)

where SP1spec and SP2spec represent the original acoustic spectrograms of
SP1 and SP2, respectively. The reconstructed spectrograms are denoted by
SP1att and SP2att . A positive AMI value indicates that the recovered spectro-
gram is more similar to the target than to the masker. A higher AMI value
indicates a greater similarity between the recovered spectrogram and the
target.

4 Results

We trained multiple DNNs to perform the dichotic listening task, similarly
to the electrophysiological study in humans (Mesgarani & Chang, 2012) (see
section 2). The DNNs had autoencoder structures that encoded the inputs,
which generated outputs of the same dimensions as those of the inputs.
The input data contained mixed spectrograms of the two speakers, SP1 and
SP2 (see Figure 1A). The goal of the task was to differentiate the masker
speakers from the target speakers. The key to the success of the models was
the selective attention signals that were applied to the encoder stages. We
then compared the contributions of the attention projected onto different
encoder stages and investigated the influence of model architectures on the
results.
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Neural Network Analysis of the Cocktail Party Effect 2281

4.1 Selective Recovery of Spectrograms. We conducted audio separa-
tion experiments on our trained model, the scheme of which resembled
the dichotic listening tasks designed for human participants (Cherry, 1953;
Mesgarani & Chang, 2012). In this task, when attention toward the tar-
get speaker was imposed, the output of the model (reconstructed spectro-
grams) was expected to approximate the original spectrograms of the target
speaker.

In each trial, the input was a mixed spectrogram that was generated by
overlapping SP1 and SP2 soundtracks and converting them into a spectro-
gram. SP1 and SP2 took turns being the target and masker speakers, and the
corresponding attention signal was provided accordingly. We also collected
the recovered spectrograms when there was no attention target assigned.
In summary, each trial contained six spectrograms: two original spectro-
grams (SP1 and SP2), a mixed spectrogram (input to model), a reconstructed
spectrogram without attention, and two reconstructed spectrograms while
attending to SP1 and SP2. The original spectrograms were generated by
4-second sound clips.

Among the spectrograms of each trial, comparisons were made between
the original and the reconstructed SP1-SP2 pairs. A sample (sample ID
9) containing the original, mixed, and reconstructed spectrograms is dis-
played in Figure 2. The original spectrograms of SP1 and SP2 are displayed
in Figures 2A and 2B. The mixed spectrogram (see Figure 2C) demon-
strates that the experimental setting was acoustically challenging since the
spectrotemporal features from the two audio sources are highly overlap-
ping. The superposed energy contours of the two spectrograms (see Figure
2D) confirmed the difficulty in separating overlapping spectrograms. For
the nonattended conditions, the reconstructed spectrogram resembled the
mixed spectrogram (see Figure 2E). By contrast, for the attended conditions,
the reconstructed spectrograms of SP1 and SP2 (see Figures 2F and 2G) re-
sembled the original spectrograms (see Figures 2A and 2B).

For the reconstruction, we calculated the correlation between the re-
constructed spectrograms and the target and masker spectrograms for
SP1 and SP2, respectively. Correlations were calculated for both attend-
ing and nonattending conditions. For the attending trials, the reconstructed
spectrograms (of both SP1 and SP2) demonstrated a higher correlation
with targets and a lower correlation with maskers, whereas those of the
nonattending trials showed no such preference in general (see Figure 3A).
In fact, depending on whether attention was focused on SP1 or SP2, the
correlation was scattered either above or below the diagonal line, which in-
dicated that the correlation between the targets and the reconstructed spec-
trograms was significantly higher than that between the maskers and the
reconstructed spectrograms. In addition, the recovered spectrograms of the
nonattending trials failed to show a preference for either SP1 or SP2. For
SP1-attending trials, 85.42% of the data was spread underneath the diagonal
line, which indicated a higher similarity to the original SP1 spectrograms.
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2282 T. Y. Kuo et al.

Figure 2: A sample of selective recovery of spectrograms. Each experimental
trial included original spectrograms from target and masker, a mixed spectro-
gram, and three recovered spectrograms under different attention situations.
The graph illustrates sample 9. We labeled the text in corresponding loca-
tions on spectrograms of SP1 and SP2. The contour illustration (D) was used
only to demonstrate the overlap of energy contours and was not used in the
experiments.

However, for SP2-attending trials, 97.08% of the data were spread above the
diagonal line, which indicated the same pattern as that for SP1-attending
trials. Despite the slight preference toward SP2, the overall correlation dis-
tribution of both speakers indicated an obvious attentional modulation ef-
fect because the reconstructed spectrograms were highly correlated with
the original spectrograms. The high correlation between the reconstructed
spectrograms and the original target spectrograms (0.794 for SP1 and 0.838
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Neural Network Analysis of the Cocktail Party Effect 2283

Figure 3: Distributions of spectrogram correlation coefficients and attentional
modulation index (AMI). Analysis of 240 testing trials. Each trial contained six
spectrograms: original speaker 1 (SP1), original speaker 2 (SP2), mixed, recovery
spectrograms for nonattended trials, attended SP1, and attended SP2. (A) Cor-
relation between the recovered spectrogram and the spectrograms of SP1 and
SP2 speech, under the attended SP1 (red), attended SP2 (blue), and nonatten-
tion (gray) conditions. Each point denotes the correlation between the recovered
spectrogram and SP1 speech (horizontal axis) and SP2 speech (vertical axis) of
one condition. N = 240 for each condition. The yellow and green dots denote
different conditions of sample 9 shown in Figure 2. (B) Comparisons of the mean
correlations of consistent and inconsistent speakers. Left: Correlations between
reconstructed spectrograms and the spectrograms of SP1 in SP1-attending tri-
als and SP2-attending trials. Right: Correlations between reconstructed spectro-
grams and the spectrograms of SP2 in SP1-attending trials and SP2-attending
trials. ***p < 0.01, Student’s t-test. (C) Distribution of the AMI when applying at-
tention to all stages. N = 240. Results were obtained from the model with n = 6,
k = 3, and m = 3.

for SP2) reinforces the observations described above (see Figure 3B). To fur-
ther confirm that attentional modulation helped to recover spectrograms
that were closer to the target spectrograms, we compared the mean correla-
tions between the reconstructed and masker spectrograms (see Figure 3B).
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Results showed that the mean correlation between the reconstructed and
target spectrograms was higher than the mean correlation between the re-
constructed and masker spectrograms, regardless of the speaker who was
being attended to (p < 0.01, Student’s t-test).

Finally, based on previous electrophysiological research on the cocktail
party effect (Mesgarani & Chang, 2012), we used a scalar metric called the
AMI to evaluate the selectivity of the attention introduced (see section 2).
The AMI is calculated by adding the correlations between the recovered
spectrograms and their target spectrograms, then subtracting the correla-
tions between the recovered spectrograms and their masker spectrograms.
Thus, an AMI larger than 0 indicates that the recovered spectrogram is more
similar to the target spectrogram and less similar to the masker spectro-
gram. We calculated AMI values for all trials (see Figure 3C) and found that
most values were clearly larger than 0 (mean = 0.663, SD = 0.373), which
indicated the emergence of the attentional effect. Our results are in line with
a previous study conducted in humans (Mesgarani & Chang, 2012).

4.2 Contributions of Attention Signals at Different Encoder Stages.
To examine the contributions of attention signals at each encoder stage, we
manipulated the attention projections in two ways: by applying attention
signals to multiple stages in a gradual manner and to signals to one stage
at a time.

The first condition was aimed at investigating the consecutive change
in correlation between the recovered and the original spectrograms. Specif-
ically, we explored whether there was a sudden change at a certain stage
or whether any obvious tendencies of change in correlation occurred. We
applied attention starting from the highest encoder stage (only this stage
receives attention) and finishing at the lowest stage (all stages receive atten-
tion). When the highest stage alone received attention, the distribution of
correlations between the reconstructed SP1 spectrograms and the original
SP1/SP2 spectrograms largely overlapped with the distribution obtained
from the reconstructed SP2 spectrogram (see Figure 4A). When the atten-
tion signals were applied to additional stages, the two distributions became
more separated (see Figures 4B to 4E). We found that the tendency of separa-
tion was nonlinear and exhibited a peak at a certain point. The separability
between the two distributions remained small when the attention signals
were applied only to the higher stages (i.e., stages above S3). However, the
separability changed drastically when attention signals were applied to S3

and the stages below. This indicated that the lower stages play a major role
in selective recovery.

For each attention condition, we also calculated the mean correlations
between the recovered spectrograms and the clean SP1/SP2 spectrograms
for all trials. The increasing trend of the correlations between the recovered
and target spectrograms fit the exponential curves well, and the correlation
growth peaked at the lower stages (see Figures 4F and 4G).
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Neural Network Analysis of the Cocktail Party Effect 2285

Figure 4: Speech separation results with cumulative attention across stages.
(A–E) Scatter plots of the spectrogram correlations for speaker 1 (SP1)-attending
and speaker 2 (SP2)-attending conditions. Notations are the same as those in
Figure 3A. (F, G) The correlation of recovered spectrograms to original spectro-
grams when attention was applied to different stages, with the recovery target
as SP1 and SP2, respectively. We fit the data using the sigmoid function and
plotted it along the dotted lines. The function fitting was measured in R-squared
metrics and reached R-squared over 0.999 for all dotted lines.

To eliminate the possibility that these results were caused by the com-
plex interaction between multiple stages when receiving attention signals,
we also conducted experiments whereby we applied attention signals to
each stage individually. Results showed that the lower stages contributed
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2286 T. Y. Kuo et al.

Figure 5: Speech separation results with attention applied to single stages.
These figures are plotted in the same fashion as in Figure 4, except that the at-
tention signals were applied to only one stage in each graph.

more to the AMI fluctuation, consistent with the results of the previous ex-
periment (see Figure 5).

4.3 Comparison of Variant Model Structures. To exclude the possibil-
ity that the conclusion we have drawn was specific to the choice of model
structure, we built variants of the autoencoder, which were trained to per-
form the same task. Specifically, we altered the number of stages (n) and
the number of dimension-preserving ResBlocks (k) in the encoder and the
number of ResBlocks (m) in the decoder. We used n = 4, 6, 9; k = 1, 2, 3; and
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Figure 6: Comparison of attentional modulation index (AMI) changes for dif-
ferent models. The models are parameterized with different m, n, and k. Curves
were fit using sigmoid functions. (A) Changes in AMI when applying atten-
tion cumulatively in n = 4, 6, and 9 models, starting from the highest stage.
(B) Changes in AMI when applying attention to a single stage in each exper-
imental trial within n = 4, 6, and 9 models, respectively.

m = 0, k. For m, we used its two extremes: m = 0 (only ResTranspose but no
additional ResBlock in any decoder stage) and m = k (ResBlocks in the de-
coder stage were symmetrical to those in the encoder stage). In total, we
trained and tested 18 model structure variants.

We calculated the mean AMI for each model configuration. To examine
the incremental contributions to AMI, we applied attention signals grad-
ually, starting from the top. When attention signals were not extended to
the lower half of the model, we observed only trivial changes in AMI (see
Figure 6A). However, as the attention signals were extended to the lower
stages, the mean AMI increased rapidly and reached its peak. In addition,
we collected AMIs under conditions where attention was projected onto
a single stage (see Figure 6B). Under different model structure variations
(with different stage numbers and encoder designs), we found that projec-
tions onto the lower stages induced a greater AMI increase. By contrast,
attention signals projected to the higher stages had only a trivial effect.
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Taken together, the earlier stages in the pathway exhibited stronger at-
tentional modulation effects than the later stages and seemed to domi-
nate the cocktail party effect without joint participation of higher attention
signals.

5 Discussion and Conclusion

5.1 Conclusion. In this study, we took advantage of artificial models
and drew similarities between the hierarchical nature of the auditory neural
pathway and hierarchical DNNs. We then compared the impact of attention
on the AMI along the auditory pathway. First, we trained a DNN based on
the dichotic listening task paradigm until it reached a similar performance
as that of humans (Mesgarani & Chang, 2012). We then extended the origi-
nal model structures by constructing 18 variants. The attention signals were
applied either separately or gradually, starting from the highest stage of the
models in our experiments. Results showed that the earlier stages had a
stronger attentional modulation effect, whereas the later stages had a much
weaker modulation effect on the auditory selection process. Our findings
drew a similar conclusion as that of previous studies that reported an effect
of selective attention on the early stages of auditory processing (Nakamoto
et al., 2008; Price & Bidelman, 2021; Rinne et al., 2008; Slee & David, 2015;
Woldorff et al., 1993; Zion Golumbic et al., 2013).

Our results may be regarded as a pilot experiment that offers potential
other avenues for investigating the impact of attention at different stages
of the auditory pathway. A possible experimental scenario is a noninvasive
ablation study of attentional effects; a specific region on the auditory path-
way could be inhibited selectively using repetitive transcranial magnetic
stimulation while the researchers measure the fluctuations in participants’
performance. Our results could offer valuable insight into future physio-
logical experiments and aid the formulation of testable hypotheses.

5.2 Biological Plausibility of the Models. In this study, we attempted
to infer actual neural mechanisms by probing DNN models. As in previ-
ous studies (Fukushima & Miyake, 1982; Hassabis, Kumaran, Summerfield,
& Botvinick, 2017; Tai, Socher, & Manning, 2015), we drew from the con-
cepts of neuroscience and applied them to DNN models. Several studies
that compared DNN models and real brains have shown that a well-trained
DNN model resembles neuronal activity patterns of real brains (Cadieu
et al., 2014; Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Khaligh-
Razavi & Kriegeskorte, 2014; Yamins & DiCarlo, 2016). For example, Cadieu
et al. (2014) conducted a comparative study between representation pat-
terns of multiple DNN models and the inferior temporal (IT) cortex of
the macaque during visual object recognition. Results showed that a well-
structured model achieves similar task accuracy; moreover, artificial neu-
rons within the model exhibit representations similar to those of biological
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neurons. Numerous other studies have also suggested that DNNs exhibit
hierarchical processes: lower DNN stages show better prediction of lower-
level neural activity, and higher stages better predict activity of higher cor-
tical regions (Eickenberg et al., 2017; Khaligh-Razavi & Kriegeskorte, 2014).
These studies demonstrate the potential for DNNs to simulate the brain to
accomplish computationally challenging tasks.

In view of the similarity between DNNs and the sensory pathways
on the computational level, many works used deep learning models to
study the computational principles of the brain. For example, by using an
unsupervised deep learning model, Zhang, Hu, Hong, and Zhang (2019)
suggested that sparse activity of neurons in different visual regions and
nonlinear transformation between these regions can lead to phonetic repre-
sentation in the superior temporal cortex. For another example, by using a
self-supervised deep learning model, Konkle and Alvarez (2022) suggested
that the category representation encoded in anterior regions of the ventral
visual stream can emerge by learning to represent individual images rather
than categories.

In our study, we included features that were determined in previous neu-
rophysiological studies to offer more biologically plausible models. First,
experimental evidence has revealed that the auditory pathway is exten-
sively modulated by event-driven attention. Attention signals project onto
multiple brain areas in the ascending auditory pathway, from the primary
and nonprimary auditory cortices to the cochlea. Second, studies have
demonstrated the hierarchical structure of the auditory system, where dif-
ferent functions are employed along the ascending neural pathway, such
as auditory parsing, extraction, and transformation (Pérez-González &
Malmierca, 2014). Third, we followed the decoding method of electroen-
cephalography signals used in Mesgarani and Chang (2012) and established
an encoder-decoder network that resembled the hierarchical encoding pro-
cess in the actual auditory pathway. According to these findings, we trained
the AttentionNet independently from the ResUnet to simulate attentional
projections along all encoder stages. It is worth noting that the Attention-
Net is merely a simple network with a single FC layer, and thus it may be
an oversimplification of attentional signal projections.

Aside from the model structure, our experimental setting was similar
to the dichotic listening experiment. The classical dichotic listening task is
considered a simplified condition of the multispeaker environment (Cherry,
1953) in which participants receive two separate audio streams in different
ears.

5.3 Limitations. Previous studies on auditory attention typically use
two types of stimuli: tones and speech (Ding & Simon, 2012; Zion Golumbic
et al., 2013). The primary difference between the two is that speech data con-
tain phonemes and semantic context, whereas tones do not. The emergent
stage of speech separation may differ depending on the experimental data.
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For model training, we used human speech data segmented into 4-second
clips and shuffled. The sounds were segmented according to time window
instead of phonemes, resulting in phonemes being retained in some speech
clips but not in others. Therefore, one might argue that our experimental
setting was not practical because the setting was closer to the situation in
which participants listen to corrupted speech rather than mixed but intact
speech as in typical experimental settings.

Furthermore, biological neurons possess greater complexity than the
computational units in deep learning models in terms of structure, such as
neural dendrites, lateral connections, and top-down connections. Thus, we
used the model solely to infer neuronal representation at the populational
level. Future work could include additional features that have been discov-
ered in the actual brain, such as recurrent circuitry structure (Aponte et al.,
2021) and cortical microcircuit found in the auditory cortex (Blackwell &
Geffen, 2017).

Finally, we employed a supervised learning paradigm rather than an un-
supervised learning paradigm. It remains unclear whether the learning be-
havior of animals is supervised or unsupervised (Hinton & McClelland,
1988; Lillicrap, Santoro, Marris, Akerman, & Hinton, 2020; Whittington &
Bogacz, 2019). Previous studies have indicated that supervised learning
provides better simulations of neural representations (Banino et al., 2018;
Khaligh-Razavi & Kriegeskorte, 2014). Nevertheless, it is worth comparing
and validating our results using unsupervised learning models.
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