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a b s t r a c t

Many computational models have been proposed for interpreting the properties of neurons in the
primary visual cortex (V1). But relatively fewer models have been proposed for interpreting the
properties of neurons beyond V1. Recently, it was found that the sparse deep belief network (DBN)
could reproduce some properties of the secondary visual cortex (V2) neurons when trained on natural
images. In this paper, by investigating the key factors that contribute to the success of the sparse DBN, we
propose a hierarchical model based on a simple algorithm, K-means, which can be realized by
competitive Hebbian learning. The resulting model exhibits some response properties of V2 neurons,
and it is more biologically feasible and computationally efficient than the sparse DBN.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The response properties of the neurons in the primary visual
area (V1) have long been studied since the ground breaking
discovery that the receptive fields of these neurons are edge-like
[1]. Many computational models have been proposed to model
such properties, among which two well-known proposals are
sparse coding [2,3] and independent component analysis (ICA)
[4]. Both approaches can be viewed as single-layer linear networks
whose inputs are image pixels and outputs are assumed to be
sparse. The outputs correspond to the responses of simple cells in
V1. Sparse response means that the output units are silent most of
the time and fire only occasionally. It has been demonstrated that
the sparsity constraint plays a significant role in reproducing the
edge-like receptive fields of V1 simple cells. Some recent nonlinear
models enjoying the benefit of sparsity constraints are also able to
replicate the edge-like receptive fields of V1 simple cells, including
restricted Boltzmann machine (RBM) [5], auto-encoder [6], and
K-means algorithm [7,8].

Another important type of neurons in V1, the complex cells,
also attracted much interest. To reproduce the spatial phase
invariance property of these cells, hierarchical models [9–11] have
been proposed to model nonlinear statistical regularities in natural
images. However, there have been fewer attempts to quantita-
tively model the properties of neurons beyond V1 along the
cortical ventral pathway, such as V2 or V4. The famous hierarchical
model HMAX [12] was shown to be able to reproduce some
properties of V4 neurons [13], but the properties of the low level
units of this model were handcrafted. What is more interesting to
the computational neuroscience community is a model that
emulates the visual pathway in a layer-wise fashion, and pre-
ferably employs the same learning method in different layers. Such
a model would provide potentially better explanation for the
learning procedure that takes place in the brain. The deep belief
network (DBN) [14] is a candidate. A DBN consists of multiple
layers of restricted Boltzmann machines (RBMs), and its learning
starts from the bottom layer, and progresses layer-by-layer to the
top layer in a similar fashion. It was found that with sparsity
constraints on each layer, a two-layer DBN was able to replicate
some properties of the receptive fields of both V1 neurons and V2
neurons [15,5]. However, RBM is a highly abstract model and its
learning algorithm, namely, the contrastive divergence algorithm
[16], is too complicated for biological systems. In addition, training
RBM is computationally expensive, which has been a barrier to its
wider use. Though some remedies have been proposed [17], it is
still desirable to come up with some simple and efficient alter-
natives. This servers as our motivation for this work.
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Compared with previous models that were only capable of
modeling V1 simple cell response properties by imposing sparsity
constraints, the DBN owes its success largely to the nonlinearity on
its first-layer output. In the present paper, we will demonstrate
that the level of sparsity on the second-layer output also plays a
key role in obtaining these results. More specifically, the second-
layer model response should not be too sparse. Both factors should
be taken into consideration if one seeks an alternative model for
similar tasks.

Inspired by these observations, we propose a very simple yet
effective model for V2 neurons. The model originates from the
K-means clustering algorithm, which can be considered as an
extremely sparse single-layer model where the input is image
pixels and only one of the output units takes a non-zero value. To
control the sparsity level of this algorithm, some modifications are
necessary.

The rest of this paper is organized as follows. In Section 2 the
sparse DBN is briefly reviewed and the critical factors that
contribute to its success are discussed. In Section 3, a modified
K-means algorithm is presented, which follows a hierarchical
K-means model. Section 4 presents experimental results and
Section 5 concludes the paper.

2. Sparse deep belief network

A restricted Boltzmann machine (RBM) consists of a layer of
visible units v, a layer of hidden units h and a set of symmetric
connection weights W between the two layers. The visible units
and hidden units have biases, denoted by ci and bj, respectively
[16]. The visible and hidden units are stochastic units which can
only take 0 or 1. Given the parameters W, b and c, an RBM defines
the following joint distribution for its visible and hidden units:

pðv;hÞ ¼ 1
Z
expð�Eðv;hÞÞ; ð1Þ

where Eðv;hÞ ¼ �v > Wh�c> v�b
>
h is called the energy function,

and Z ¼ Rv;hexpð�Eðv;hÞÞ is called the partition function. A stan-
dard RBM has no constraints on its visible and hidden units. See
Fig. 1(a) for an illustration.

The sparse RBM imposes a sparse firing constraint on the
hidden units [5]. With a set of training data v1;…; vN where
vnARD, the sparse RBM minimizes the following function:

�N log ∑
h
pðv;hÞ

* +
þλ ∑

K

j ¼ 1
‖p� 〈EðhjjvÞ〉‖2 ð2Þ

over wij; ci and bj, where

� log pðv;hÞ ¼ 1
2s2∑

i
v2i

� 1
s2 ∑

i
civiþ∑

j
bjhjþ∑

i;j
viwijhj

 !
ð3Þ

and λ;s40. In the above equations, 〈 � 〉 denotes averaging over
samples and Eð�Þ denotes the conditional expectation given the
data. The parameter p is the desired firing probability of the
hidden units, which controls the sparsity level of the hidden units.
Also note that in these equations, the energy function is adjusted
to use “Gaussian visible units”, which takes real values instead of
binary values to better accommodate the pixel intensities of
natural images [18].

One advantage of RBM is that given the visible units, the
hidden units are conditionally independent, and vice versa, which
directly gives rise to the use of an efficient block Gibbs sampling
method for learning. Specifically, the following probability dis-
tributions were used to sample the states of the stochastic units
[5]:

pðvijhÞ �N ciþ∑
j
wijhj;s2

 !
;

Pðhj ¼ 1jvÞ ¼ logistic
1
s2 bjþ∑

i
wijvi

 ! !
; ð4Þ

where N ð�Þ and logisticð�Þ denote the Gaussian distribution and
logistic function, respectively.

With a modified contrastive divergence learning rule [5], the
sparse RBM was able to learn Gabor-like weights on natural
images resembling receptive fields of V1 simple cells. Fig. 2
visualizes the weights associated with 200 hidden units. They
were learned on a large set of randomly selected 14-by-14 patches
from ten 512-by-512 natural images [2], which were preprocessed
by 1=f whitening and low-pass filtering in the frequency domain.
The sparsity level was set as p¼0.02. Other parameter settings can
be found in Section 4.4.

In order to reproduce V2 neuron-like response properties, we
stacked another sparse RBM with 200 hidden units on top of the
first layer, and trained the second-layer weights and biases by
freezing the first-layer parameters (See Fig. 1(b)). The resulting
model is called a sparse deep belief network or sparse DBN [5]. The
receptive fields of the second-layer units are visualized in Fig. 3 as
the weighted sum of the receptive fields of the first-layer units.
It can be seen that with appropriate p, the receptive fields are like
edge conjunctions or corners, in agreement with the V2 neuron
properties (Fig. 3(b) and (c)). The nonlinearity in the first layer
output, i.e. the binarization governed by the logistic function in
(4), plays a significant role. This is because a two-layer linear
model is equivalent to a single-layer linear model, and a linear
model could at most reproduce V1 simple cell properties.

Fig. 3 shows that when the sparsity level p increases the
receptive fields of the second-layer units become more and more
complex. In fact, with p¼0.02 the receptive fields are visually

Fig. 1. Illustration of the models. (a) A single-layer structure. Both RBM and sparse RBM can be represented by this figure and the only difference is that the latter imposes
a sparse firing constraint on the hidden units. The K-means and multiple firing K-means algorithms can also be represented by this figure, and the difference is that the
former allows only one hidden unit fire at a time, while the latter allows more than one hidden units fire at a time and (b) a two-layer structure illustrating the sparse DBN
and the hierarchical K-means model.
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similar to those of the first layer units. This observation suggests
that the nonlinearity is not the only factor that contributes to the
emergence of V2 neuron receptive fields in sparse DBN, and a
relatively relaxed sparsity constraint on the second layer also
makes critical contribution. Therefore, if one seeks alternative
models for reproducing the V2 neuron properties, both factors
should be considered.

3. Hierarchical K-means algorithms

3.1. K-means algorithm

The goal of K-means algorithm is to partition the data set
v1;…; vN into K clusters. Denote the mean or centroid of cluster j
by wj, where j¼ 1;…;K , then the goal is to identify these wj. The
learning algorithm is termed the expectation maximization (EM)
algorithm, which consists of two iterative steps [19]:

� E-step: For each input vn determine which cluster it belongs to.
Mathematically, this amounts to determine jn ¼ arg minj

Jvn�wj J .� M-step. Update wj for j¼ 1;…;K by taking the mean (centroid)
of data assigned to cluster j. That is, wj ¼∑T

t ¼ 1vt=T where vt

denotes the input assigned to cluster j.

After the algorithm converges, each data point vn can be
assigned a binary indicator vector h where hj¼1 if this point
belongs to cluster j and hj¼0 otherwise. If the latent variables hj
are viewed as “neurons”, then the firing pattern of these “neurons”
is extremely sparse — for each input only one “neuron” fires.

This algorithm can be implemented by biological systems with
simple operations. In fact, the E-step can be implemented by a
winner-takes-all circuits [20] and the M-step can be implemented
by a Hebbian learning rule. To show the latter point, let us specify
the following Hebbian plasticity rule for the change of a synaptic
weight wja between hj and vna due to the presence of an input
vn [21]:

Δwja ¼ hjðvna�wjaÞ:

Note that hj can only take 0 or 1. Clearly, this rule modifies the
weight wja for all a so they more match the input vna when the
output unit hj is activated by vn. The synaptic weight is updated as
follows:

wja ¼wjaþΔwja ¼wjaþðvna�wjaÞ ¼ vna:

For a set of inputs, the learning rule is

wja ¼wjaþ
1
T

∑
T

t ¼ 1
ðvta�wjaÞ ¼ ∑

T

t ¼ 1
vta

where t denotes the label of inputs that have activated unit hj
(making hj¼1). This is actually the E-step shown above.

3.2. Multiple firing K-means algorithm

Now we relax the sparsity constraint of the original K-means
algorithm by allowing multiple hidden units fire together for an
input. Specifically, for each input vn we assign L clusters it belongs
to, whose centroids are the nearest to the input. Mathematically,
this amounts to determine a setΩ� V ¼ f1;…;Kg such that jΩj ¼ L
and Jvn�ws Jr Jvn�wj J for sAΩ and jAV\Ω.

For each input vn set

hjðvnÞ ¼
1 if vn belongs to cluster j;
0 otherwise:

�
ð5Þ

Then there are always L hidden units firing, and given a desired
sparsity level p, L can be simply determined as L¼pK. For this
reason this algorithm is called multiple firing K-means algorithm.
The structure is also illustrated in Fig. 1(a). To learn this model, we
take a similar EM approach as the original K-means algorithm.
Convergence of this algorithm is stated in the following theorem.

Fig. 2. Visualization of 200 first layer weight vectors of the sparse DBN. Each
14�14 patch corresponds to a weight vector.

Fig. 3. Visualization of 200 second layer weight vectors of the sparse DBN.
(a) p¼0.02, (b) p¼0.03, and (c) p¼0.04.
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Theorem 1. Each EM step of the multiple firing K-means algorithm
lowers the value of the function

J ¼ ∑
K

j ¼ 1
hj‖v�wj‖2

* +
ð6Þ

until convergence.

Proof. In the E-step, wj is fixed. It is easy to see that setting hj¼1
for jAΩ and hj¼0 for jAV\Ω corresponds to the minimum of J
over the binary vector h subject to the constraint that for each
input there are always L elements equal to 1. In the M-step, h is
fixed. Notice that ∂J=∂wj ¼ �2〈hjðv�wjÞ〉. Then this step is equiva-
lent to taking ∂J=∂wj ¼ 0, which corresponds to minimization of J
over wj. Therefore, each step results in a decrease of J until
convergence.

Biologically implementation of this algorithm is similar to that
for the standard K-means algorithm, as we discussed above. The
only difference is that in the M-step, an L-winners-take-all circuit
like those presented in [22,23] is necessary.

3.3. Hierarchical model

Similar to the sparse DBN, we can stack another multiple firing
K-means model on top of the first-layer, i.e. it takes the output of
the first layer as input and learns the second-layer centroids by
freezing the first-layer centroids (see Fig. 1(b)). We term the
resulting model a hierarchical K-means model.

4. Experiments

4.1. First layer results

It has been shown that the standard K-means algorithm can
reproduce the Gabor-like receptive fields of V1 cells [7,8]. Here we
show that the multiple firing K-means algorithm has the same
capability. We randomly extracted a large number of 14-by-14
patches from 10 natural images, which were preprocessed in the
same way as in Section 2, that is, preprocessed by 1=f whitening
and low-pass filtering in the frequency domain. At every iteration
50,000 patches were fed into the algorithm and the centroids got
updated once. We determined whether the algorithm converged
by checking the change of the loss function J in (6).

Fig. 4 illustrates the evolving history of J over iterations with
L¼3, 5, 7, 10, respectively. It is observed that after a few iterations
the value of J reaches a relatively stationary state. The 200
centroids plotted in Fig. 5 were obtained with L¼3 for 40

iterations. Clearly they are edge detectors, similar to the results
of standard K-means [7,8], sparse DBN [5], and other sparse coding
algorithms [2,4]. For L¼5, 7, 10 the results were visually similar to
this figure (results not shown).

4.2. Second layer results

We stacked a second layer of multiple firing K-means algorithm
on top of the first layer. The second layer had 200 units and L was
set to 10 (corresponding to p¼0.05). After 20 iterations, the
algorithm converged.

It was found that only a few elements in the learned second-
layer centroids were significantly larger than zero. Fig. 6 shows the
distribution of the elements in 10 randomly selected second-layer
centroids with the boxplot method.1 It is seen that most elements
except a few are close to zero.

The second-layer centroids are visualized in Fig. 7 in the same
manner as Fig. 3, i.e. they are visualized as weighted sums of the
first-layer centroids. It is seen that the shapes of many second-
layer centroids are like corners or conjunctions of edges, qualita-
tively in agreement with some V2 neuron properties [24].

4.3. Comparison with physiological results

To test the properties of the second-layer units obtained by the
hierarchical K-means model, we generated a set of angle stimuli
as shown in Fig. 8 [24]. Each stimulus was a 14-by-14 image
patch representing an angle in f2π=M;4π=M;…;2ðM�1Þπ=Mg in
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Fig. 4. Value of the loss function J over iterations.

Fig. 5. Visualization of 200 first layer centroids of the hierarchical K-means model
with L¼3 (corresponding to p¼0.015).
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Fig. 6. Boxplot of elements in 10 random second-layer centroids.

1 The box has lines at the lower quartile, median, and upper quartile values.
The whiskers are lines extending from each end of the box to show the extent of
the rest of the data. Outliers denoted by “þ” are data with values beyond the ends
of the whiskers. A detailed description can be found in MATLAB documentation.
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different orientations, which resulted in MðM�1Þ different stimuli.
See [24] for details. In addition, each stimulus was normalized to
zero mean and unit variance. The angle stimuli in experiments
were white (pixel value 1) in black background (pixel value 0). For
better visualization, however, the pixel values are reversed in
Fig. 8.

For each angle stimulus at a location, we first calculated the
output of the first-layer units according to (5). As for the second-
layer responses, we adjusted the definition of response for the
purpose of comparing with physiological results. Instead of binar-
izing the distances between the second-layer weights and the
first-layer outputs as in (5), we adopted the distances as the
continuous output. In addition, to be consistent with the usual
meaning of responses of real neurons (the more similar a stimulus
to the receptive field, the higher responses will be induced by the
stimulus), the output of a second layer unit with centroids w
induced by an input v was defined as

r¼ C�‖w�v‖2 ð7Þ

where C ¼maxw;v‖w�v‖2 is a constant for ensuring non-
negativity of the responses. The “max” operation was applied over
all second-layer units on all angle stimuli at all positions.

To identify the “center” of the receptive field of each second-
layer unit, we translated all stimuli densely over the 14�14 input
image patch, and identified the position at which the maximum
response was elicited. All measures were then taken with all angle
stimuli centered at this position.

Fig. 8 shows the stimuli set with M¼24 together with
responses of six representative second-layer units. In each subplot,
a small black square indicates the angle that induced overall peak
response of the second-layer unit (or model V2 neuron) and the
shaded patches indicate the angles that induced over 70% of the
peak response. The angles are symmetric along the diagonal, so
are the responses. There are neurons responsive to particular
angles (top left), many angles (top middle and top right),
a particular bar of an angle (bottom left) and either bar of an
angle (bottom right). There are both single-group responses
(bottom middle) and two-group responses (bottom right). We
emphasize that these units are typical in our model.

To make a quantitative comparison between the simulation
results and physiological results in [24], we then generated a
stimuli set with M¼12. Five quantities about the statistics of
the response profiles of the model neurons on the stimuli set
were calculated and presented in Fig. 9. The definitions of the
five quantities can be found in [24]. The physiological results
and the sparse DBN results are also presented in the figure. It is
seen that the hierarchical K-means model has produced similar
results.

Another method for analyzing the properties of the model V2
neurons is to inspect their responses with small gratings covering
different parts of the receptive fields. This is the method used in
[25] where V2 neurons of monkeys were investigated. It was
reported that some V2 neurons had uniform responseFig. 7. Visualization of 200 s layer centroids of the hierarchical K-means model.

Fig. 8. Response profile of six example model V2 neurons on a set of angle stimuli. Top: The left most patch shows a model V2 neuron by taking the weighted sum of V1
simple cell receptive fields. The next five patches show the receptive fields of the model V1 simple cells that had strongest connections to this V2 neuron. Bottom: Darkened
patches represent stimuli to which the model V2 neuron responded strongly. A small black square indicates the overall peak response.
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characteristics across their receptive fields and some had nonuni-
form response characteristics.

We generated 18 sinusoidal gratings with different orientations
(equal interval between 01 and 1801) in a circle with diameter
9 pixels. The surround of the receptive field was padded with zeros
to make a larger patch of size 24-by-24, and each grating was
translated within the patch, which would result in a 16-by-16
response matrix. Enlarging the receptive fields was to allow the
gratings to move a little bit outside of the original receptive fields.
At each location, 18 gratings were presented and consequently 18
responses were obtained. Responses of a model neuron were

defined by (7) where C was the square of maximum distance of
this neuron to all stimuli at all positions in the enlarged receptive
field. Then the orientation tuning curves can be plotted in a polar
coordinate ðr;θÞ where r stands for the response and θ stands for
the orientation of the grating.

Fig. 10 shows four example model V2 neurons. For each neuron
only 8�8 tuning curves are presented, whose locations were
sampled from the 16-by-16 response matrix with step size 2 on
each side. Top left shows a model neuron with uniform response
maps, that is, at all locations (except where there is little
response), the neuron roughly tunes to a vertical grating. The
other three neurons have nonuniform response maps. The top
right one shows that at center location of the receptive field, the
neuron tunes to a 1351 grating but at the upper right corner it
tunes to a 801 grating. The bottom two show two neurons whose
receptive fields are “L” shape (left) and horizontally reversed “L”
shape (right). These results are qualitatively consistent with the
findings in the monkey brain [25]. However, these results contain
more noise and the response maps are not as smooth as real V2
neurons' response maps (cf. Fig. 1 in [25]), which is partly due to
the brutal nonlinearity used at the first layer output, that is, the
binarization operation as described in (5).

4.4. Computational efficiency

Both the hierarchical K-means model and the sparse DBN can
produce similar results, then how about their computational
efficiency? This is not a question in computational neuroscience
but is important in engineering applications, considering that deep
learning networks have become a hot topic [14,26,27]. In fact, an
excellent computer vision model, CDBN [26], was build on the
sparse DBN.
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Fig. 9. Distribution of the response statistics over the angle stimuli. The five figures show respectively the distribution over (i) peak angle response, (ii) tolerance to primary
line component, (iii) tolerance to secondary line component, (iv) tolerance to angle width, and (v) tolerance to angle orientation. See [5,24] for details. The physiological
results and the sparse DBN results were extracted from Fig. 6 in [5]. Best viewed in color.

Fig. 10. Examples of space-orientation receptive field maps for four model V2
neurons. Responses of neurons are plotted in polar coordinate as a function of
stimulus orientation at 64 positions arranged in square arrays in space. The center
of each circle indicates the location in the receptive field and the radius indicates
the maximum response. Orientation increases counterclockwise from 01 at the 12
o'clock position on each gray circle. Results for the orientation range between 01 to
1801 were repeated to complete the polar plot in full circle.

Table 1
Comparison of the computing time in seconds.

Models V1 V2

Sparse DBN 2536.7721.0 2693.1737.3
Hierarchical K-means 68.973.9 43.274.2
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One difficulty for such a comparison is that a common
termination condition is lacked for the algorithms (notice that
their final results are not the same, though qualitatively similar).
Fortunately, our experiments showed that the computing time of
the two algorithms differed significantly for producing visually
similar results. Table 1 shows the computing time of the two
algorithms on a computer (Intel Core i5-2320 3 GHz �4, RAM
8GB), averaged over 10 trials, for producing visually similar results
to Figs. 2, 3(c), 5 and 7, respectively. For sparse DBN, p¼0.02 in
layer 1 and p¼0.04 in layer 2. Moreover, in each layer s decayed
by a factor of 0.99 after every iteration with initial value 0.4, as
suggested in [15]. Other parameters were tuned to achieve high
efficiency. Learning terminated after 800 iterations for each layer
and in every iteration 100,000 patches were input to the model in
batches of 200. For hierarchical K-means, the first layer learning
terminated after 40 iterations and the second-layer learning
terminated after 20 iterations and in every iteration 50,000
patches were input to the model together. It is seen that learning
in each layer of the hierarchical K-means model is tens of times
faster than the sparse DBN.

5. Concluding remarks

There are many models capable of producing edge-like struc-
ture that resembles the receptive fields of V1 neurons in the brain,
but few have been shown capable of reproducing the edge
conjunction structure of the receptive fields of V2 neuron, except
the sparse DBN. In the paper a hierarchial K-means model is
presented as an alternative to the sparse DBN for modeling the
response properties of V2 neurons. After unsupervised training on
natural images, the proposed model exhibited properties that
qualitatively matched physiological data recorded in monkeys.
Compared with the sparse DBN, the proposed model is more
biologically feasible and computationally efficient.

Due to its biological plausibility, the proposed model may be
employed to interpret the mechanisms of visual processing in the
brain. Due to its computational efficiency, it is worth further
investigations for computer vision. For example, it would be
interesting to extend it to learn object parts, like the convolutional
DBN [26]. We expect that integration of convolution into this
model will lead to more powerful models, which might be useful
on some challenging computer vision tasks.
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