
IEEE TRANSACTIONS ON NEURAL NETWORKS ON LEARNING SYSTEMS, VOL. 23, NO. 5, MAY 2012 821

Brief Papers

Solving the Assignment Problem Using Continuous-Time
and Discrete-Time Improved Dual Networks

Xiaolin Hu, Member, IEEE , and Jun Wang, Fellow, IEEE

Abstract— The assignment problem is an archetypal
combinatorial optimization problem. In this brief, we present
a continuous-time version and a discrete-time version of
the improved dual neural network (IDNN) for solving the
assignment problem. Compared with most assignment networks
in the literature, the two versions of IDNNs are advantageous
in circuit implementation due to their simple structures. Both of
them are theoretically guaranteed to be globally convergent to a
solution of the assignment problem if only the solution is unique.

Index Terms— Analog circuits, assignment problem, linear
programming, quadratic programming, sorting problem.

I. INTRODUCTION

The assignment problem is concerned with assigning n
entities to n slots for achieving minimum cost or maximum
profit. It is known to be a polynomial combinatorial opti-
mization problem. Its applications cover pattern classification,
machine learning, operations research, and so on.

For solving the assignment problem, there exist many effi-
cient iterative algorithms such as the Hungarian method, the
auction method, and the signature method. Inspired by the
Hopfield network for solving optimization problems, many
artificial neural networks have been developed for solving
the assignment problem (e.g., [1]–[4]). One of the major
advantages of neural networks is that they can be implemented
in parallel analog circuits to achieve super high speed, which
is very attractive in real-time applications. However, most
of these methods require an “annealing” procedure which is
sensitive to the solution quality. In addition, this time-varying
procedure would pose difficulties in circuit implementation.
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In [5], an assignment neural network is proposed without
any time-varying procedure. It features elegant theoretical
results with constant parameters. Its major demerit lies in its
complex structure. For instance, it entails more neurons and
interconnections than the network in [4]. But this is a tradeoff
between the efficiency and structural complexity, as argued in
[5]. In this brief, we show that this tradeoff is unnecessary.
Based on the improved dual neural network (IDNN) proposed
in [6], we design a very simple assignment network with
constant parameters only.

The IDNN is an efficient neural network solver for a
special class of quadratic programming (QP) problems, and it
has been successfully applied to solve the k-winners-take-all
(k-WTA) problem [6]. The k-WTA network was then
extended to encompass discontinuous activation functions
[7], [8]. The original IDNN and its k-WTA extensions [7], [8]
are continuous-time solvers, which could be implemented
on analog circuits. Analog circuits can have extremely fast
computing capability but they are not as precise or robust
as digital circuits [9]. With the rapid development of digital
technologies, discrete-time neural networks seem to be a
good compromise between speed and scalability. In [10], a
continuous-time assignment network proposed in [2] is dis-
cretized and implemented on digital hardware, which achieves
good results. In [11], a discrete-time k-WTA network is
proposed based on the IDNN. In this brief, in addition to a
continuous-time assignment network based on the IDNN, we
also present a discrete-time counterpart.

II. PROBLEM FORMULATION

Suppose that there are n entities to be assigned to n slots
and assigning entity i to slot j induces a cost ci j . Then, what
is the best assignment in terms of minimum total cost? This
is a typical assignment problem. Mathematically, it can be
formulated as a linear zero–one programming problem (LZOP,
for short)

minimize f1 =
n∑

i=1

n∑

j=1

ci j xi j

s.t.
n∑

i=1

xi j = 1 ∀ j = 1, . . . , n

n∑

j=1

xi j = 1 ∀i = 1, . . . , n

xi j ∈ {0, 1} ∀i, j = 1, . . . , n (1)

where ci j and xi j are, respectively, the cost variable and the
decision variable associated with assigning entity i to slot j .
The variable xi j = 1 means assigning entity i to slot j , and
xi j = 0 means not assigning entity i to slot j . Since any
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entity should be, and must be, assigned to only one slot, and
any slot should be, and must be, assigned one entity, a feasible
assignment should correspond to a matrix x = {xi j } with only
one element equal to 1 in every column and row.

Lemma 1: The LZOP problem is equivalent to the follow-
ing quadratic zero–one programming (QZOP) problem:

minimize f2 = q

2

n∑

i=1

n∑

j=1

x2
i j +

n∑

i=1

n∑

j=1

ci j xi j

s.t.
n∑

i=1

xi j = 1 ∀ j = 1, . . . , n

n∑

j=1

xi j = 1 ∀i = 1, . . . , n

xi j ∈ {0, 1} ∀i, j = 1, . . . , n (2)

where q > 0 is a constant.
Proof: This can be proved by showing that∑n

i=1
∑n

j=1 x2
i j is a constant in the feasible region.

Because xi j ∈ {0, 1}, xi j = x2
i j . Then

∑n
i=1

∑n
j=1 x2

i j =∑n
i=1

∑n
j=1 xi j = n, which completes the proof.

It is known that if the LZOP problem has a unique solution,
it is equivalent to a linear programming (LP) problem by
replacing the binary constraints with the intervals xi j ∈
[0, 1],∀i, j = 1, . . . , n, which is called the LP problem here-
after. In what follows, we formulate the continuous counterpart
of the QZOP problem.

Theorem 1: If the QZOP problem has a unique solution,
then there exists a sufficiently small positive constant q such
that the QZOP problem is equivalent to a QP problem by
replacing the binary constraints with the intervals xi j ∈
[0, 1],∀i, j = 1, . . . , n., which is called the QP problem
hereafter.

Proof: What is needed to show is only that the unique
solution of the QZOP problem, denoted by x∗, is also a
solution of the QP problem because the objective function of
the QP is strictly convex and it has at most one solution.

Denote the feasible region of the QP problem by X and
the feasible region of the QZOP problem by V . Note that any
point in X is called a doubly stochastic matrix and any point
in V is called a permutation matrix. According to the well-
known Birkhoff–von Neumann theorem, a square matrix is
doubly stochastic if and only if it is a convex combination of
permutation matrices. Namely, any x ∈ X can be expressed
as x = ∑

k θkv(k), where v(k) ∈ V ,
∑

k θk = 1, 0 ≤ θk ≤ 1.
Denote the unique solution of the QZOP problem by x∗. Then

〈x∗, x∗ − v(k)〉 =
n∑

i=1

n∑

j=1

x∗
i j

(
x∗

i j − v
(k)
i j

)

=
n∑

i=1

n∑

j=1

(x∗
i j )

2 − x∗
i j v

(k)
i j

= n −
n∑

i=1

n∑

j=1

x∗
i j v

(k)
i j > 0

for v(k) ∈ V, v(k) �= x∗, where 〈·, ·〉 stands for the Frobenius
inner product of two matrices. Because x∗ is also the unique

solution of the LP problem, according to the equivalence
between convex optimization problem and variational
inequality [12], we have

〈∇ f1(x∗), x − x∗〉 = 〈c, x − x∗〉 ≥ 0 ∀x ∈ X .

Now we show that for any x ∈ X but x �= x∗, the last equality
above cannot hold. Otherwise, there exists such a point x̄ so
that 〈c, x̄−x∗〉 = 0. Then 〈c, x−x∗〉 = 〈c, x−x̄〉 ≥ 0,∀x ∈ X ,
indicating that x̄ �= x∗ is also a solution of the LP problem,
which contradicts the uniqueness of the solution. Hence

〈c, x − x∗〉 > 0 ∀x ∈ X , x �= x∗.

Consequently

〈c, v(k) − x∗〉 > 0 ∀v(k) ∈ V, v(k) �= x∗

as V ⊂ X . Let

0 < q ≤ 〈c, v(k) − x∗〉
〈x∗, x∗ − v(k)〉 ∀v(k) ∈ V, v(k) �= x∗.

It follows that

〈∇ f2(x∗), v(k) − x∗〉 = 〈qx∗ + c, v(k) − x∗〉 ≥ 0

∀v(k) ∈ V, v(k) �= x∗.

For any x ∈ X

〈∇ f2(x∗), x − x∗〉 =
〈
∇ f2(x∗),

∑

k

θkv(k) − x∗
〉

=
∑

k

θk〈∇ f2(x∗), v(k) − x∗〉 ≥ 0

where 0 ≤ θk ≤ 1,
∑

k θk = 1. Hence, x∗ is a solution of the
QP problem, which completes the proof.

From the proof, it can be seen that q should be small enough
and its upper bound is

min
k

〈c, v(k) − x∗〉
〈x∗, x∗ − v(k)〉 (3)

which is positive. In practice, the optimal solution x∗ is
unknown, and it is time consuming to find all feasible solutions
v(k) to the LZOP problem or the QZOP problem. So, it is
suggested to set q to be very small. Throughout the rest of this
brief, it is assumed that the solution of the assignment problem
(1) is unique. Then, with small q , all the four problems,
namely, LZOP, QZOP, LP, and QP, are equivalent.

III. TWO NETWORKS

A. Architecture

We rewrite the QP problem in the vector form as

minimize f2 = 1

2
‖y‖2 + pT y

s.t. Ay = 12n, 0n2 ≤ y ≤ 1n2

where p and y are vectors by stacking the first column to
the last column of the matrix c/q = {ci j /q} and x = {xi j },
respectively, 1 and 0 are two vectors with all elements equal
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to 1 and 0 (the dimensions are indicated by the subscripts),
respectively, and

A =

⎛

⎜⎜⎜⎜⎜⎝

In In · · · In

1T
n 0T

n · · · 0T
n

0T
n 1T

n · · · 0T
n

...
...

...
...

0T
n 0T

n · · · 1T
n

⎞

⎟⎟⎟⎟⎟⎠

with In standing for the n × n dimensional identity matrix.
Throughout this brief, ‖ · ‖ stands for the l2 norm of a vector.
According to [6], the problem can be solved by the following
IDNN:

τ
dz
dt

= −Aỹ + 12n (4)

where τ > 0 is a constant, ỹ = g(AT z − p), and g =
(g(s), . . . , g(s))T . g(s) is the activation function with satu-
ration, which is equal to s if 0 ≤ s ≤ 1, 0 if s < 0, and 1
otherwise. The scalar form of the network is as follows:

1) state equations

τ
dui

dt
= −

n∑

j=1

g(ui + v j − ci j /q) + 1, i = 1, . . . , n

τ
dvi

dt
= −

n∑

j=1

g(u j + vi − c j i/q) + 1, i = 1, . . . , n;

2) output equations

xi j = g(ui + v j − ci j ), i, j = 1, . . . , n.

Clearly, this network would entail n neurons for representing
ui and n neurons for representing vi .

Next, we propose a discrete-time version of the IDNN for
solving the assignment problem

z(k + 1) = z(k) − β(Aỹ(k) − 12n) (5)

where ỹ(k) = g(AT z(k) − p). The scalar form is as follows:
1) state equations

ui (k + 1) = ui (k) −

β

⎛

⎝
n∑

j=1

g(ui (k) + v j (k) − ci j

q
) − 1

⎞

⎠ , i = 1, . . . , n

vi (k + 1) = vi (k) −

β

⎛

⎝
n∑

j=1

g(u j (k) + vi (k) − c j i

q
) − 1

⎞

⎠ , i = 1, . . . , n;

2) output equations

xi j (k) = g(ui (k) + v j (k) − ci j ), i, j = 1, . . . , n

where k labels the steps and β > 0 is the step size. Also,
this network would entail n neurons for representing ui and n
neurons for representing vi .

The two networks share the same overall structure, as
illustrated in Fig. 1, though concrete implementation entails
different techniques, i.e., analog versus digital circuit tech-
niques. The block diagram for realizing the neuron ui or vi

can be found in [13].

Fig. 1. Abstract structure of the assignment networks (4) and (5).

TABLE I

MODEL COMPARISON

Neurons Time-varying
param

Activation fun

Primal NN [4] n2 Yes Continous

Dual NN [4] 2n Yes Continuous

PDNN [5] n2 + 2n No Continuous

Heaviside NN [14] 2n No Discontinuous

IDNN in this brief 2n No Continuous

B. Comparison With Existing Neural Networks

In [4], two neural networks are proposed for solving the
assignment problem (1). One is called the primal neural
network, and the other is called the dual neural network. It
is seen that the primal neural network entails n2 neurons and
O(n2) connections, whereas the dual neural network entails
2n neurons and O(n2) connections (see [4] for details). The
latter model is simpler in structure, nearly as simple as the
IDNN (4). But both of them involve a temperature parameter
α exp(−t/T ), which is hard to realize in hardware.

In [5], a continuous-time version and a discrete-time version
of the primal–dual neural network are proposed for solving
the assignment problem. They entail constant parameters only,
which is superior to the networks in [4], but both of them
consist of n2 + 2n neurons and O(n2) connections.

Recently, an assignment neural network with the Heaviside
step activation function was proposed with 2n neurons [14].
In addition, it does not need the parameter q . But because the
activation function is discontinuous, its implementation entails
different techniques, which might be harder compared with
implementing a continuous activation function.

Since the assignment problem can be equivalently written
as an LP or QP problem, all LP networks and QP networks
are capable of solving it, e.g., [15], [16]. However, it is easy
to see that all of them require n2 + 2n neurons for solving the
assignment problem.

The properties of some typical networks discussed above
are summarized in Table I. It is seen that the IDNNs (both the
continuous- and discrete-time versions) presented in this brief
are among the best.
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IV. STABILITY AND CONVERGENCE RESULTS

A. Preliminaries

Let Rn denote the n-dimensional real space and Z+ denote
the set of nonnegative integers.

Definition 1:

1) The equilibrium point of (4) is a point z∗ ∈ R2n such
that Ag(AT z∗ − p) = 12n .

2) The equilibrium point of (4) is stable in the sense of
Lyapunov if for all ε > 0 there exists δ = δ(ε) such that
if ‖z(0)‖ < δ, then ‖z(t)‖ < ε, t ≥ 0.

3) A continuous trajectory s(t) ∈ Rn of (4) is globally
convergent to the set S ⊂ Rn if it exists for all t ∈
[0,+∞) and limt→+∞ ‖s(t) − s̄‖ = 0, where s̄ ∈ S ⊂
Rn .

All of the above definitions apply to the discrete-time IDNN
(5) by substituting t with k, and t > 0 with k ∈ Z+.

It is seen that the equilibrium sets of the neural networks
(4) and (5) are the same, which is denoted by E hereafter.

Lemma 2 [12]: For any x, y ∈ Rn

(x − y)T (g(x) − g(y)) ≥ ‖g(x) − g(y)‖.
The following result follows from [6, Th. 2] and Theorem 1

directly.
Lemma 3: If q is sufficiently small [the upper bound is indi-

cated in (3)], the unique solution of the assignment problem
(1), denoted by y∗, can be expressed as y∗ = g(AT z∗ − p),
where z∗ ∈ E .

B. Main Results

Theorem 2: If q is sufficiently small, then any equilibrium
point of the continuous-time network (4) is stable in the
sense of Lyapunov, and the corresponding output trajectory
globally converges to the unique solution of the assignment
problem (1).

Proof: Since it is assumed that the assignment problem has
a unique solution, according to Lemma 3, the unique solution
corresponds to the equilibrium point of (4). Because (4) is a
special case of the network proposed in [6], the results follow
from [6, Th. 4] directly.

In what follows, we analyze the stability and convergence
result of the discrete-time network (5). A procedure similar to
that in [11] is adopted.

Theorem 3: Any equilibrium point of the discrete-time net-
work (5) is stable in the sense of Lyapunov, and the corre-
sponding output trajectory globally converges to the unique
solution of the assignment problem (1), if q is sufficiently
small and the step size β < 2/λmax, where λmax denotes the
maximum eigenvalue of AT A.

Proof: First of all, it is seen that λmax > 0 because AT A
is positive semidefinite but not equal to zero. Since the right-
hand side of the dynamic system (5) is defined over the entire
R2n , there exists a unique solution z(k) with the initial point
z0 as k increases from 0 to +∞ [17].

Let z∗ denote the equilibrium point of (5). Then, according
to Lemma 3, y∗ = g(AT z∗ − p) and Ay∗ − 12n = 02n .

Define a function V (k) = ‖z(k)−z∗‖2. Since V (k) is radially
unbounded and

V (k + 1) − V (k)

= ‖z(k + 1) − z∗‖2 − ‖z(k) − z∗‖2

= ‖z(k) − β(Aỹ(k) − 12n) − z∗ + β(Ay∗ − 12n)‖2

−‖z(k) − z∗‖2

= ‖z(k) − z∗ − βA(ỹ(k) − y∗)‖2 − ‖z(k) − z∗‖2

= −2β(z(k) − z∗)T A(ỹ(k) − y∗) + β2‖A(ỹ(k) − y∗)‖2

= −2β((AT z(k) − p) − (AT z∗ − p))T (ỹ(k) − y∗)

+β2‖A(ỹ(k) − y∗)‖2

≤ −2β‖ỹ(k) − y∗‖2 + β2λmax‖ỹ(k) − y∗‖2

= β(βλmax − 2)‖ỹ(k) − y∗‖2 ≤ 0

the equilibrium point z∗ is stable in the sense of Lyapunov
[17]. In above equation, Lemma 2 is used. In addition, any
level set {z|V (k) ≤ l} is bounded, where l > 0. So, {z|V (k) ≤
V (0)} is bounded. It follows from the LaSalle’s invariance
principle for discrete-time dynamic systems that every state
trajectory z(k) tends to the largest invariant set contained in

K = {z ∈ R2n | ‖ỹ(k) − y∗‖ = 0}
as k → +∞ [17]. Clearly, the largest invariant set in K is K
itself here, because every point in this set will make z(k+1) =
z(k). On the other hand, every equilibrium point must be a
member of K. Hence, K = E . Then the state trajectory z(k)
of the network globally converges to E . From Lemma 3, the
output trajectory ỹ(k) globally converges to the unique solution
of the assignment problem.

Note that the upper bound of the step size indicated in
Theorem 3 is conservative, and in practice larger step sizes
can be used to accelerate the convergence. See Section V.

In very large-scale integrated implementation, time delays
may become a critical problem for stability [18]–[22]. But the
analysis with time delays is out of the scope of this brief.

V. SIMULATION RESULTS

To verify the results presented in the last section, we
numerically simulated the proposed networks (4) and (5) for
solving some problems in MATLAB.

Example 1: For generating an assignment problem (1),
what one needs to set is only the cost matrix c. We randomly
generated some n × n cost matrices with every element
between 0 and 1. Fig. 2(a) and (b) shows the state trajectories
of the continuous-time network (4) and the discrete-time
network (5), respectively, for solving an assignment problem
with n = 10. The parameters were set as follows: τ =
10−6, β = 1.9/λmax(AT A), and q = 0.001. The outputs
of the two networks converge to the same point, which is
the correct solution of the assignment problem, verified by
solving the LP problem with the MATLAB build-in function
“linprog.” The two networks start from the same initial point.
It is seen that their trajectories look similar. In fact, this is the
case in most simulations.
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Fig. 2. State trajectories of (a) network (4) and (b) network (5).

In Theorem 1, q is given an upper bound. But it is unclear
how small is enough. We investigated this issue numerically.
Only the continuous-time network (with τ = 10−6) was
simulated, as the discrete-time network has similar dynamic
behaviors. The idea was to compare the convergence time
of the network with different q values. Let x∗ be the ground
truth obtained by MATLAB function “linprog.” For saving
CPU time in running these simulations, we terminated the
program when

∑

i

∑

j

|round(xi j (t)) − x∗
i j | ≤ 10−6

where round(x) is equal to 0 if x < 0.5 and 1 otherwise.
The time at which this was achieved was recorded as the
convergence time. For every q value, 30 different runs
with random initial points in [−50, 50] were executed. The
statistics of the convergence time for three problem sizes
is plotted in Fig. 3. It is seen that, as q decreases, the
convergence time increases. Therefore, q should not be too
small. This poses some difficulty in choosing an appropriate q .

Next, we investigated the relationship between the problem
size and the convergence time of the network (4). Let q =

10−6 10−5 10−4 10−3 10−2

10−1

100

101

102

q

C
on

ve
rg

en
ce

 ti
m

e 
(m

s)

n=10
n=50
n=70

Fig. 3. Convergence time of (4) with different q values. Note that the
coordinates are in logarithmic scale. The squares, circles, and asterisks denote
the means for n = 10, 50, and 70, respectively, and the bars below and above
them stand for 1 standard deviation each. The continuous lines are linear
regressions of the logarithm of the means versus the logarithm of q.

0.01/80, and select several n ≤ 80. For each n, 30 different
runs with random initial points in [–50, 50] were executed. The
same stopping criterion was adopted as before. The statistics
of the convergence time with τ = 10−6 is plotted in Fig. 4(a).
It is seen that the convergence time decreases as n increases.
This is due to the parallel nature of the network. If q is allowed
to vary with the problem size, e.g., q = 0.01/n, then the
convergence time will be reduced [see Fig. 4(b)].

Simulating the discrete-time network (5) is time consum-
ing because the step size indicated in Theorem 3 is rather
conservative while there is no intelligence for choosing the
appropriate step sizes as the MATLAB code simulators by
which we have simulated (4). Here we introduce a simple rule.
Let β0 = 1.9/λmax(AT A) and β = αβ0. Initially, α = 1000.
Every 500 updates, we check ‖Aỹ(k)− 12n‖1. If this quantity
has not decreased over 20%, then α = α/10. This process
continues until α = 1. In addition, when α = 1, after every
500 updates, it has 50% percent chance to jump to 1000 (this
is to perturb the system to have a better starting point which
may lead to faster convergence). The stopping criterion was
adopted the same as above. With this rule, the steps needed
for convergence were significantly reduced, and the statistics
is presented in Fig. 4(b). It is seen that the convergence
steps increase approximately linearly with the problem size
no matter whether q is fixed or varied. Anyway, the problem-
size-dependent q has resulted in faster convergence.

Example 2: Sorting is a fundamental operation accounting
for 25% of data processing time [23]. It is desirable to develop
some fast and robust hardware units for doing this job. It is
known that it is equivalent to an assignment problem in the
form of (1) with ci j = ri s j , where ri denotes the value of
item i in the unsorted sequence and s j denotes the nonzero
weighting parameter for j th position in the sorted sequence
(e.g., if s1 > s2 > · · · , then the desired order is from small to
large). The decision variable xi j = 1 if item i with value ri is
in the j th position of the sorted sequence.
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Fig. 4. Convergence time of (a) network (4) and (b) network (5) for
different problem sizes. The circles and bars denote the means and the standard
deviations, respectively. The continuous lines are the linear regressions of the
means versus n.

Consider sorting the sequence {1.4, 3.5,−3.5, 5, 10, −1, 0,
8, 7.5, 7.6}. Let ri = 11 − i for i = 1, 2, . . . , 10, which
implies sorting from small to large. Let q = 0.1, τ = 10−6,
β = 1.9/λmax(AT A) and simulate the two networks (4)
and (5) (without the acceleration rule) to solve the problem.
Fig. 5(a) and (b), respectively, demonstrate the transient behav-
ior of the two networks with a random initial point. Again, it
is seen that they look very similar. The corresponding final
outputs are both
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Fig. 5. State trajectories of (a) network (4) and (b) network (5) for solving
the sorting problem.

which is the correct solution. The sorted sequence is
{r3, r6, r7, r1, r2, r4, r9, r10, r8, r5}.

VI. CONCLUSION

In this brief, we applied an IDNN for solving the problem
and obtained two assignment networks, a continuous-time
version and a discrete-time version, with 2n neurons and with-
out time-varying parameters. Both networks are theoretically
guaranteed to be globally convergent to the solution of the
problem if only the problem has a unique solution.

The main disadvantage of the proposed assignment net-
works is that they introduce a parameter that should be set
appropriately. If it was too large, the network may converge
to incorrect states, if it was too small, the convergence will be
slow. Unfortunately, at the current stage, it has to be selected
by trial and error.

REFERENCES

[1] S. P. Eberhardt, T. Daud, D. A. Kerns, T. X. Brown, and A. P. Thakoor,
“Competitive neural architecture for hardware solution to the assignment
problem,” Neural Netw., vol. 4, no. 4, pp. 431–442, 1991.

[2] J. Wang, “Analogue neural network for solving the assignment problem,”
Electron. Lett., vol. 28, no. 11, pp. 1047–1050, May 1992.



IEEE TRANSACTIONS ON NEURAL NETWORKS ON LEARNING SYSTEMS 827

[3] J. J. Kosowsky and A. L. Yuille, “The invisible hand algorithm: Solving
the assignment problem with statistical physics,” Neural Netw., vol. 7,
no. 3, pp. 477–490, 1994.

[4] J. Wang, “Primal and dual assignment networks,” IEEE Trans. Neural
Netw., vol. 8, no. 3, pp. 784–790, May 1997.

[5] J. Wang and Y. Xia, “Analysis and design of primal-dual assignment
networks,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp. 183–194, Jan.
1998.

[6] X. Hu and J. Wang, “An improved dual neural network for solving
a class of quadratic programming problems and its k-winners-take-all
application,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2022–2031,
Dec. 2008.

[7] Q. Liu, C. Dang, and J. Cao, “A novel recurrent neural network
with one neuron and finite-time convergence for k-winners-take-all
operation,” IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1140–1148, Jul.
2010.

[8] J. Wang, “Analysis and design of a k-winners-tak-all model with a single
state variable and the heaviside step activation function,” IEEE Trans.
Neural Netw., vol. 21, no. 9, pp. 1496–1506, Sep. 2010.

[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and
Signal Processing. New York: Wiley, 1993.

[10] D. L. Hung and J. Wang, “Digital hardware realization of a recurrent
neural network for solving the assignment problem,” Neurocomputing,
vol. 51, pp. 447–461, Apr. 2003.

[11] Q. Liu, J. Cao, and J. Liang, “A discrete-time recurrent neural network
with one neuron for k-winners-take-all operation,” in Proc. 6th Int. Symp.
Neural Netw., May 2009, pp. 272–278.

[12] D. Kinderlehrer and G. Stampcchia, An Introduction to Varia-
tional Inequalities and Their Applications. New York: Academic,
1980.

[13] X. Hu and J. Wang, “Solving the assignment problem with the improved
dual neural network,” in Proc. 8th Int. Symp. Neural Netw., May–Jun.
2011, pp. 547–556.

[14] Q. Liu and J. Wang, “A one-layer dual recurrent neural network with a
heaviside step activation function for linear programming with its linear
assignment application,” in Proc. Int. Conf. Artif. Neural Netw., Jun.
2011, pp. 253–260.

[15] X. Hu and B. Zhang, “An alternative recurrent neural network for
solving variational inequalities and related optimization problems,” IEEE
Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1640–1645, Dec.
2009.

[16] L. Cheng, Z.-G. Hou, and M. Tan, “A delayed projection neural network
for solving linear variational inequalities,” IEEE Trans. Neural Netw.,
vol. 20, no. 6, pp. 915–925, Jun. 2009.

[17] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton, NJ: Princeton Univ.
Press, 2008.

[18] H. Zhang, Z. Wang, and D. Liu, “Global asymptotic stability of recurrent
neural networks with multiple time-varying delays,” IEEE Trans. Neural
Netw., vol. 19, no. 5, pp. 855–873, May 2008.

[19] T. Li, A. Song, S. Fei, and T. Wang, “Delay-derivative-dependent
stability for delayed neural networks with unbounded distributed delay,”
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1365–1371, Aug.
2010.

[20] Z. Zeng, T. Huang, and W. X. Zheng, “Multistability of recurrent neural
networks with time-varying delays and the piecewise linear activation
function,” IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1371–1377,
Aug. 2010.

[21] Z. Zeng and T. Huang, “New passivity analysis of continuous-time
recurrent neural networks with multiple discrete delays,” J. Indust.
Manag. Opt., vol. 7, no. 2, pp. 283–289, 2011.

[22] Y. Shen and J. Wang, “Robustness analysis of global exponential stability
of recurrent neural networks in the presence of time delays and random
disturbances,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 1, pp.
87–96, Jan. 2012.

[23] D. E. Knuth, The Art of Computer Programming, Sorting and Searching.
Reading, MA: Addison-Wesley, 1973.

Estimator Design for Discrete-Time Switched Neural
Networks With Asynchronous Switching and

Time-Varying Delay

Dan Zhang, Li Yu, Qing-Guo Wang, and Chong-Jin Ong

Abstract— This brief deals with the estimator design problem
for discrete-time switched neural networks with time-varying
delay. One main problem is the asynchronous-mode switching
between the neuron state and the estimator. Our goal is to design
a mode-dependent estimator for the switched neural networks
under average dwell time switching such that the estimation
error system is exponentially stable with a prescribed l2 gain
(in the H∞ sense) from the noise signal to the estimation error.
A new Lyapunov functional is constructed that may increase
during the mismatched switchings. New results on the stability
and l2 gain analysis are then obtained. The admissible estimator
gains are computed by solving a set of linear matrix inequalities.
The relations among the switching law, the maximal delay upper
bound, and the optimal H∞ disturbance attenuation level are
established. The effectiveness of the proposed design method is
finally illustrated by a numerical example.

Index Terms— Asynchronous switching, average dwell time,
state estimation, switched neural networks, time-varying delay.

I. INTRODUCTION

Neural networks have received increasing research attention
in the last decades due to their successful applications in
various areas, including image processing, pattern recognition,
associative memory, and optimization problems [1]. Many
neural networks may contain inherent time delays in signal
transmission, which cause oscillation and instability. In recent
years, a great number of results have been reported for various
neural networks with time delays. The existence of equilib-
rium point, global asymptotic/exponential stability, and the
existence of periodic solutions have been intensively studied
(see [2]–[8]).

In reality, neural networks often exhibit a special charac-
teristic of network-mode switching, which gives rise to the
so-called switched neural networks. Namely, the switched
neural networks are a class of neural networks whose para-
meters are operated by a switching signal, see [9]–[14] for
more details. In these results, the well-developed techniques
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