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a b s t r a c t

A novel idea is proposed for solving a system of mixed linear matrix inequalities and linear
vector inequalities and equalities. First, the problem is converted into an unconstrained
minimization problem with a continuously differentiable convex objective function. Then,
a continuous-time dynamic system and a discrete-time dynamic system are proposed for
solving it. Under some mild conditions, the proposed dynamic systems are shown to be
globally convergent to a solution of the problem. The merits of the methods refer to their
simple numerical implementations and capability for handling nonstrict LMIs easily. In
addition, the methods are promising in neural circuits realization, and therefore have
potential applications in many online control problems. Several numerical examples are
presented to illustrate the performance of the methods and substantiate the theoretical
results.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Linear matrix inequalities (LMIs) have been playing an increasingly important role in the field of optimization and control
theory because a wide variety of problems (linear and convex quadratic inequalities, matrix norm inequalities, convex con-
straints etc.) can be written as LMIs [1–3]. In addition, LMIs have found many applications in exploring properties of recur-
rent neural networks, as their stability conditions are often expressed with the aid of LMIs (see, e.g., [4–7]).

LMIs are a class of convex optimization problems, and there exist many methods for solving them, e.g., the ellipsoid algo-
rithm [8], the projective algorithm [9], and various interior-point methods (e.g., [10,11]). See [1,3] for excellent surveys of
these methods. In the paper, two dynamic system methods are proposed for solving LMIs. The motivation is twofold. One
reason is that analog neural computing defined by dynamic systems is regarded as a very promising approach for solving
computationally expensive problems in real-time [12–14,22,15–17,19–21,23,26,25,27,24,18], and it is believed that the cur-
rent research may pave a way for designing more powerful recurrent neural networks for solving LMIs. In 2000, a novel neu-
ral network method was proposed for solving LMIs [28]. The basic idea involves two steps. First, construct an energy function
whose minima correspond to the solutions of the LMI. Second, construct a dynamic system with its right-hand-side being the
negative gradient of the energy function. Solving this dynamic system will lead to a solution of the LMI. The limitation of this
approach lies in its inability to handle nonstrict LMIs because it adopts the Cholesky factorization of positive definite matri-
ces which cannot be generalized to positive semidefinite matrices. The other reason is that understanding the properties and
features of such dynamic systems is helpful for developing new efficient iterative algorithms for solving LMIs. Some merits
can be extracted from the dynamic systems. For example, it is known that many popular numerical algorithms such as the
aforementioned interior-point algorithms [10,11,1,3] handle strict LMIs only; and in order to achieve a solution on the
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boundary of the feasible region, theoretically, some parameters in these algorithms should approach infinity.1 It will be seen
that the proposed methods in the paper do not require such parameters but can converge to exact solutions. For another
example, the equivalence between LMIs and unconstrained optimization problems, which is disclosed in Section 2 can in-
spire some efficient iterative algorithms (e.g., some variants of the Newton method).

In the paper, based on the two steps similar to those in Lin et al. [28], two different dynamic systems are constructed to
solve LMIs, both of which are capable of handling nonstrict LMIs. The idea of the proposed methods originates from two
recurrent neural networks for solving linear vector equalities and inequalities [14]. Actually, the present paper addresses
a natural, but interesting, extension of the idea in Xia et al. [14]. As this extension entails an operation of projecting a matrix
onto a cone, which is not as easy as the projection operations in Xia et al. [14], the proposed dynamic systems can not be
implemented in recurrent neural networks as easy as the counterparts in Xia et al. [14]. However, with the fast development
of neural network theories, it is possible that this projecting operation can be realized by neural networks as well. On the
other hand, if such neural networks are not available, some high-speed digital equipments specialized for this operation
can be coupled with the neural networks whose state equations are defined by the proposed dynamic systems.

To make the proposed methods more versatile in practice, I consider solving LMIs together with conventional linear vec-
tor inequalities and equalities.

Throughout the paper, the following notations are used unless otherwise specified. Rn denotes the n dimensional real
space, and Rn

þ denotes the set of all n dimensional nonnegative vectors. S
n denotes the set of all n� n symmetric matrices,

and Sn
þ denotes the set of all n� n symmetric positive semidefinite matrices. If A 2 Rm�n; vecðAÞ 2 Rmn is defined as a vector

formed by stacking the columns of A one by one from left to right. If x 2 Rm, then kxk2 denotes its l2-norm, i.e.,

kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1x2
i

q
. The inner product equipped with the real matrix space Rm�n is defined as hA;Bi ¼ trðAT BÞ ¼Pm

i¼1

Pn
j¼1aijbij;8A;B 2 Rm�n, where tr stands for the trace of a matrix. The induced norm in the matrix space is then defined

as kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hA;Ai

p
¼ kvecðAÞk, which is called the Frobenius norm. Moreover, kAk2 denotes the l2-norm of the matrix A,

which is defined as kAk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðkðAT AÞÞ

q
, where kðAT AÞ stands for the eigenvalues of AT A. If a; b are two vectors, then

a P ð>Þb is interpreted as ai P ð>Þbi for each i. Similar definitions apply to 6 and < between two vectors. A square symmet-
ric matrix A P ð>Þ0 is interpreted as A is positive semidefinite (positive definite). On the contrary, A 6 ð<Þ0 is interpreted as -
A is positive semidefinite (positive definite).

2. Problem formulation

The standard linear matrix inequality (LMI) problem is to find a vector x 2 Rm such that

NðxÞ , N0 þ
Xm

i¼1

Nixi P 0; ð1Þ

where Ni 2 Sn; i ¼ 0;1; . . . ;m. The equation is called a nonstrict LMI; correspondingly, NðxÞ > 0 is called a strict LMI. Note
that most LMIs commonly encountered in control applications are not expressed in the canonical form (1), for instance,
the generalized Lyapunov inequality

BPAþ AT PBT þ D < 0; P > 0 ð2Þ

studied in Lin et al. [28] and the following inequality

�AT P � PA� Q PB
BT P R

 !
P 0

studied in Boyd et al. [1], where A;B;D ¼ DT > 0;Q ¼ Q T ;R ¼ RT > 0 are given matrices and PT ¼ P is the matrix variable. It is
easy to rewrite such LMIs in the canonical form (1) by using the following results, which can be deduced easily.

Proposition 1. Let U 2 Rn�m; P 2 Rm�m;V 2 Rm�r be three matrices whose scalar forms are, respectively, defined as
fuijgn�m; fpijgm�m; fv ijgm�r . Then the following hold:

(1) UP ¼
Pm

s¼1

Pm
t¼1pstKðpstÞ, where KðpstÞ ¼ fkijgn�m with kij ¼ uis if j ¼ t and 0 otherwise,

(2) PV ¼
Pm

s¼1

Pm
t¼1pstKðpstÞ, where KðpstÞ ¼ fkijgm�r with kij ¼ v tj if i ¼ s and 0 otherwise,

(3) UPV ¼
Pm

s¼1

Pm
t¼1pstKðpstÞ, where KðpstÞ ¼ fkijgn�r with kij ¼ uisv tj.

Many popular methods, e.g., [9,28], solve strict LMIs; or treat nonstrict LMIs as strict LMIs with some degree of approx-
imation (e.g., any interior-point method). However, such methods may fail on some nonstrict LMIs. A simple example is to
solve diagðx;�xÞP 0 where x is a scalar. The only solution is x ¼ 0 and any small perturbation to it will lead to an infeasible

1 In practice, however, the parameters only need to increase to some values to achieve specified solution accuracy.
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solution. In fact, every nonstrict LMI involves an implicite equality constraint [1]. Theoretically, any feasible nonstrict LMI
(including the above example) can be reduced to an equivalent feasible strict LMI by eliminating implicit equality constraints
and then reducing the resulting LMI by removing any constant nullspace. But in practice this is a tough task (see [1, pp. 20–
21] for an impression of how tough the task is, where a simple nonstrict Lyapunov inequality is converted to a strict LMI),
which turns out not to be a wise idea for solving nonstrict LMIs.

In the paper, I consider solving a more general problem: find a vector x 2 Rm such that the following hold

Ax P b; Cx ¼ d; NðxÞP 0; ð3Þ

where A 2 Rp�m; b 2 Rp;C 2 Rq�m; d 2 Rq and NðxÞ is defined in (1). Note that the linear vector inequality Ax P b can be writ-
ten in the form of LMI (1) as well. But in general LMIs are harder to deal with than linear vector inequalities, therefore Ax P b
is not put into the LMI form. In what follows, the solution set of (3) is denoted by X�.

Problem (3) includes many problems as special cases. For example, consider the linear semidefinite programming
problem:

minimize hT y

subject to FðyÞ , F0 þ
Xm1

i¼1

Fiyi P 0;
ð4Þ

where h; y 2 Rm1 and Fi 2 Sn1 ði ¼ 0;1; . . . ;m1Þ. The dual problem is [2]

maximize � trðF0WÞ
subject to trðFiWÞ ¼ hi; i ¼ 1; . . . ;m1;

W 2 Sn1
þ :

In view that W is symmetric, only n1ðn1 þ 1Þ=2 components are independent. Let W ¼ fwijgn1�n1
. By introducing a new

variable

z ¼ ððw11; . . . ;wn11Þ; ðw22; . . . ;wn12Þ; . . . ;wn1n1 Þ
T 2 Rr ð5Þ

where r ¼ n1ðn1 þ 1Þ=2, and an operator vec : Sn1 ! Rr ,

vecðKÞ ¼ ððk11;2k21; . . . ;2kn11Þ; ðk22;2k32; . . . ;2kn12Þ; . . . ; kn1n1 Þ
T

where K ¼ fkijgn1�n1
, the dual problem can be rewritten as

maximize � vecðF0ÞT z

subject to Qz ¼ h;Xr

i¼1

Gizi P 0;

ð6Þ

where Q ¼ ðvecðF1Þ; . . . ; vecðFm1 ÞÞ
T and Gi ¼ fgðiÞjk g 2 Sn1 with

gðiÞjk ¼
1 if zi corresponds to wjk in ð5Þ;
0 otherwise;

�

and gðiÞkj ¼ gðiÞjk , for all j; k ¼ 1; . . . ;n1 and j P k. According to the primal-dual theorem [3], under some standard constraint
qualifications, a point y solves the primal problem (4) if and only if there exists z 2 Rr such that the following holds:

hT y ¼ �vecðF0ÞT z; Qz ¼ h;

F0 þ
Pm1

i¼1
Fiyi P 0;

Pr
i¼1

Gizi P 0:

8><
>:

This system can be put into the form of (3) with

x ¼
y

z

� �
; C ¼ hT vecðF0ÞT

0m1�m1 Qm1�r

 !
; d ¼

0
h

� �
;Ni ¼

Fi

0n1�n1

� �
; 8i ¼ 0;1; . . . ;m1;

Ni ¼
0n1�n1

Gi�m1

� �
; 8i ¼ m1 þ 1; . . . ;m1 þ r;

and A ¼ 0; b ¼ 0.
For the convenience of later discussion, the following chain rule for computing the derivatives of compound functions is

introduced.

Lemma 1. Suppose that there are two continuously differentiable functions h : Rn�n ! R and g : Rm ! Rn�n. Define a compound
function f ¼ h � g : Rm ! R as

f ðxÞ ¼ hðgðxÞÞ; dom f ¼ fx 2 dom gjgðxÞ 2 dom hg:

X. Hu / Applied Mathematics and Computation 216 (2010) 1181–1193 1183
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Then

@f ðxÞ
@x
¼

h@h=@g; @g=@x1i
..
.

h@h=@g; @g=@xmi

0
BB@

1
CCA;

where the derivative of the scalar valued-function f with respect to a matrix g is defined by

@f
@g
¼ @f

@gij

( )
n�n

; i; j ¼ 1; . . . ; n;

and the derivative of g with respect to a scalar xk is defined by

@g
@xk
¼

@gij

@xk

� �
n�n

; k ¼ 1; . . . ;m:

Proof. The result follows from

@f ðxÞ
@xk

¼
Xn

i¼1

Xn

j¼1

@f
@gij

@gij

@xk
¼ h@h=@g; @g=@xki; 8k ¼ 1; . . . ;m;

immediately by considering the definition of inner product of two matrices. h

Similar to [14], an energy function associated with problem (1) is defined first:

EðxÞ ¼ 1
2
fkAx� b� ðAx� bÞþk2

2 þ kCx� dk2
2 þ kNðxÞ � NðxÞþk2

Fg; ð7Þ

where ð�Þþ stands for a projection operator. Specifically, if x 2 Rn, xþ denotes its projection onto Rn
þ; if M 2 S

n, then Mþ de-
notes its projection onto Sn

þ. The following two lemmas disclose some basic properties of these projections.

Lemma 2 [30]. Let X be a closed convex set in a Euclidean space L endowed with any inner product h�; �i and norm k � k, and let xþ

denote the projection of a point x 2 L onto X, i.e., xþ ¼ arg minv2Xkx� vk. Then for any x; y 2 L and any v 2 X, we have

hxþ � x; v � xþiP 0; ð8Þ

and

kxþ � yþk 6 kx� yk: ð9Þ

Lemma 3. Let X; L; h�; �i; k � k be defined the same as in Lemma 2. Then the function f : L! R defined as f ðxÞ ¼ kx� xþk is convex
in x, i.e.,

f ðhxþ ð1� hÞyÞ 6 hf ðxÞ þ ð1� hÞf ðyÞ 8x; y 2 L and 0 6 h 6 1:

Moreover, the function g : L! R defined as gðxÞ ¼ kx� xþk2 is convex in x, too, and continuously differentiable with gradient
rgðxÞ ¼ 2ðx� xþÞ.

Proof. Since X is convex and xþ; yþ 2 X, we have hxþ þ ð1� hÞyþ 2 X for 0 6 h 6 1. Let u ¼ hxþ ð1� hÞy and
v ¼ hxþ þ ð1� hÞyþ. According to the definition of the projection operator we have

f ðhxþ ð1� hÞyÞ ¼ ku� uþk 6 ku� vk:

The convexity of f then follows from the fact

ku� vk ¼ khxþ ð1� hÞy� hxþ � ð1� hÞyþk 6 khx� hxþk þ kð1� hÞy� ð1� hÞyþk ¼ hkx� xþk þ ð1� hÞky� yþk:

Similarly,

gðhxþ ð1� hÞyÞ ¼ ku� uþk2
6 ku� vk2

:

By noticing that

hð1� hÞkðx� xþÞ � ðy� yþÞk2 ¼ ðh� h2Þkx� xþk2 þ ðh� h2Þky� yþk2 � 2hð1� hÞhx� xþ; y� yþi
¼ hkx� xþk2 þ ð1� hÞky� yþk2 � h2kx� xþk2 � ð1� hÞ2ky� yþk2

� 2hð1� hÞhx� xþ; y� yþi
¼ hkx� xþk2 þ ð1� hÞky� yþk2 � khx� hxþ þ ð1� hÞy� ð1� hÞyþk2

¼ hgðxÞ þ ð1� hÞgðyÞ � ku� vk2 P 0;

1184 X. Hu / Applied Mathematics and Computation 216 (2010) 1181–1193
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we can conclude the convexity of gðxÞ. Define a function ~g : L� L! R as ~gðx; yÞ ¼ kx� yk2, then

gðxÞ ¼min
y2X

~gðx; yÞ:

Notice that ~g is continuously differentiable in both x and y, and the minimum solution of the right-hand-side of above
equation is uniquely attained at y� ¼ xþ for any fixed x 2 L, then it follows from [31, Chapter 4, Theorem 1.7] that gðxÞ is dif-
ferentiable and rgðxÞ ¼ rx~gðx; y�Þjy�¼xþ ¼ 2ðx� xþÞ: h

Lemma 3 shows that the distance (in any norm) to the nearest point in a closed convex set X, defined as f ðxÞ, is a convex
function. I would like to mention that the distance (in any norm) to the farthest point in an arbitrary set C # L, defined as
~f ðxÞ ¼ supy2Ckx� yk, is also a convex function [29, p.81].

Lemma 4. [32]Let X 2 Sn be a given symmetric matrix and let X ¼ QDQT be the eigenvalue–eigenvector decomposition of X,
where D is a diagonal matrix of eigenvalues and Q is an orthogonal matrix of normalized eigenvectors. Then Xþ ¼ QDþQT , where
Dþ denotes the diagonal matrix obtained by replacing the negative components of D by zeros.

Clearly, for any scalar a we have a� aþ ¼ �ð�aÞþ. Then for any vector a we have a� aþ ¼ �ð�aÞþ. Moreover, from Lem-
ma 4, it is easy to see that M �Mþ ¼ �ð�MÞþ where M 2 S

n. Let EiðxÞ; i ¼ 1; � � � ;3 denote the three terms in EðxÞ in (7) from
left to right. Then, from Lemmas 1 and 3 we can deduce the following theorem easily.

Theorem 1. The function EðxÞ ¼
P3

i¼1EiðxÞ is convex and continuously differentiable with gradient rEðxÞ ¼
P3

i¼1rEiðxÞ, where

rE1ðxÞ ¼ AT ½ðAx� bÞ � ðAx� bÞþ� ¼ �ATðb� AxÞþ;

rE2ðxÞ ¼ CTðCx� dÞ;

rE3ðxÞ ¼

hNðxÞ � NðxÞþ;N1i

..

.

hNðxÞ � NðxÞþ;Nmi

0
BBBB@

1
CCCCA ¼ �

hð�NðxÞÞþ;N1i

..

.

hð�NðxÞÞþ;Nmi

0
BBBB@

1
CCCCA:

Moreover, EðxÞP 0, and the equality holds if and only if x 2 X�.

In what follows, let Xy ¼ fx 2 RmjEðxÞ 6 EðyÞ;8y 2 Rmg. Clearly, Xy ¼ X� if X�–;, i.e., system (3) is solvable.

Fig. 1. Block diagram of the neural network for realizing continuous-time dynamic system (10). In the left dashed rectangle, the vector x is decomposed to
components, while in the right dashed rectangle, some scalars join together to constitute a vector.
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3. Dynamic system methods

3.1. Description of dynamic systems

Using the standard gradient descent method for the minimization of the function EðxÞ in (7) we can derive the following
continuous-time dynamic system

dx
dt
¼ �lrEðxÞ ð10Þ

and the corresponding discrete-time dynamic system

xkþ1 ¼ xk � grEðxkÞ ð11Þ

to solve (3), where rE is given in Theorem 1 and l;g > 0 are user-defined parameters.
It is seen that both of the two dynamic systems involve computing of the projections of vectors and matrices onto convex

cones Rp
þ and Sn

þ, respectively. The former can be readily calculated as xþ ¼ ðxþ1 ; . . . ; xþp Þwith xþi ¼maxfxi;0g, the latter, how-
ever, can not be calculated directly. In the paper, the method suggested by Lemma 4 is used.

It is seen that the dynamic systems (10) and (11) share similar forms to those in Xia et al. [14], in which the dynamic sys-
tems are shown to be realizable by neural circuits. Here arises a question concerning about the possibility of realizing (10) and
(11) by neural circuits. Fig. 1 illustrates the block diagram of the possible neural network for realizing (10). Similarly, we can
draw the block diagram for realizing (11). Obviously, the bottleneck of the potential neural network is located in the matrix
projection block, and a high-speed computing equipment should be placed in it to accomplish the task. This computing unit
can be either a digital processing unit – which results in a hybrid analog-digital approach, or another neural network – which
results in a hierarchical neural network approach. Regarding the latter approach, currently, there do not exist such neural net-
works. Some clues can be found in [23,24,26,25] and references therein, all of which are about the eigenvalue and eigenvector
problem, matrix diagonalization, matrix factorization, and so on from the perspective of neural networks, in view that the pro-
jection can be accomplished mainly by solving the eigenvalue-eigenvector decomposition problem (see Lemma 4).

3.2. Global convergence

In order to prove the convergence result of the continuous-time dynamic system (10), the following lemma is needed.

Lemma 5.

(1) Xe ¼ Xy–;, where Xe stands for the equilibrium set of (10).
(2) For any initial point xðt0Þ ¼ x0 2 Rm, there exists a unique solution xðtÞ to (10) for t 2 ½t0; sÞ.

Proof. Since EðxÞ defined in (7) is lower bounded, Xy–;. The fact Xy ¼ Xe follows from the equivalence between x 2 Xy and
rEðxÞ ¼ 0 as EðxÞ is convex and continuously differentiable. Now I prove the second part of the lemma by showing that the
right-hand-side of (10), denoted by HðxÞ, is Lipschitz continuous in Rm. Actually, for any x; y 2 Rm, we can deduce

kHðxÞ � HðyÞk2 ¼
X3

k¼1

rEkðxÞ � rEkðyÞ
�����

�����
2

6 kAk2kðb� AxÞþ � ðb� AyÞþk2 þ kC
T Ck2kx� yk2 þ

Xm

i¼1

jhð�NðxÞÞþ � ð�NðyÞÞþ;Niij

6 kAkFkðb� AxÞ � ðb� AyÞk2 þ kC
T CkFkx� yk2 þ

Xm

i¼1

kð�NðxÞÞþ � ð�NðyÞÞþkFkNikF

6 ðkAk2
F þ kC

T CkFÞkx� yk2 þ
Xm

i¼1

kNðxÞ � NðyÞkFkNikF;

where Lemma 2, the Cauchy–Schwarz Inequality and the fact that the l2-norm of a matrix is equal to or smaller than its
Frobenius norm are used. Note that

vecðNðxÞ � NðyÞÞ ¼
Xm

i¼1

vecðNiÞðxi � yiÞ ¼ vecðN1Þ � � � vecðNmÞð Þ

x1 � y1

..

.

xm � ym

0
BB@

1
CCA ¼ Nðx� yÞ;

where N ¼ ðvecðN1Þ; . . . ; vecðNmÞÞ 2 Rn2�m. Then kNðxÞ � NðyÞkF ¼ k vecðNðxÞ � NðyÞÞk2 ¼ kNðx� yÞk2. Using these facts, we
can obtain

kHðxÞ � HðyÞk2 6 kAk2
F þ kC

T CkF þ kNkF
Xm

i¼1

kNikF

 !
kx� yk2:

1186 X. Hu / Applied Mathematics and Computation 216 (2010) 1181–1193
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Hence HðxÞ is Lipschitz continuous in Rm. According to the existence theorem of ordinary differential equations, there
exists a unique solution to the dynamic system (10) for t 2 ½t0; sÞ. The proof is completed. h

Theorem 2. The continuous-time dynamic system (10) is stable in the sense of Lyapunov and globally convergent to a point in Xy.

In view of Lemma 5 and the fact that there always exists at least one finite point x� 2 Xy, Theorem 2 can be established
without much difficulty by following similar lines in the proof of Theorem 1 in Xia et al. [14]. The only difference is that one
should choose a reference point x� in Xy instead of X� in the proof. For brevity, the details are omitted here. The following
important result is a direct consequence of Theorem 2.

Corollary 1. If system (3) is solvable, i.e., X� – ;, then the continuous-time dynamic system (10) globally converges to a point in
X�.

Remark 1. If the LMI in (3) is absent, Corollary 1 reduces to Theorem 1 in Xia et al. [14]. In other words, [14] does not ascer-
tain the global convergence of the corresponding dynamic system when (3) without LMI is unsolvable; while this result can
be ascertained according to Theorem 2.

In view of the above results, if the dynamic system (10) converges to a point which does not solve (3), then (3) has no
solution. This statement is useful in checking stability of many control systems and recurrent neural networks.

In what follows the convergence of the discrete-time dynamic system (11) is investigated. First, two lemmas are
introduced.

Lemma 6. For any x; y 2 Rm,

EðxÞ 6 EðyÞ þ rEðyÞTðx� yÞ þ 1
2
kAT Aþ CT Ck2 þ kNk

2
2

� 	
kx� yk2

2;

where N ¼ ðvecðN1Þ; . . . ; vecðNmÞÞ.

Proof. Let E12ðxÞ ¼ E1ðxÞ þ E2ðxÞ. According to Proposition 3 in Xia et al. [14], we have

E12ðxÞ 6 E12ðyÞ þ rE12ðyÞTðx� yÞ þ 1
2
kAT Aþ CT Ck2kx� yk2

2: ð12Þ

Regarding E3ðxÞ, the following holds

E3ðyÞ � E3ðxÞ þ hNðyÞ � NðyÞþ;NðxÞ � NðyÞi þ 1
2
kNðxÞ � NðyÞk2

F

¼ 1
2
kNðyÞ � NðyÞþk2

F þ hNðyÞ � NðyÞþ;NðxÞ � NðyÞi þ 1
2
kNðxÞ � NðyÞk2

F �
1
2
kNðxÞ � NðxÞþk2

F

¼ 1
2
kNðxÞ � NðyÞþk2

F �
1
2
kNðxÞ � NðxÞþk2

F P 0:

The last inequality above follows from the fact that NðxÞþ is nearest to NðxÞ among all points in S
n
þ. By noticing

hNðyÞ � NðyÞþ;NðxÞ � NðyÞi ¼ NðyÞ � NðyÞþ;
Xm

i¼1

Niðxi � yiÞ
* +

¼
Xm

i¼1

NðyÞ � NðyÞþ;Niðxi � yiÞ

 �

¼
hNðyÞ � NðyÞþ;N1i

..

.

hNðyÞ � NðyÞþ;Nmi

0
B@

1
CA

T

ðx� yÞ ¼ rE3ðyÞTðx� yÞ

and

kNðxÞ � NðyÞk2
F ¼ kNðx� yÞk2

2 6 kNk
2
2kx� yk2

2

we have

E3ðxÞ 6 E3ðyÞ þ rE3ðyÞTðx� yÞ þ 1
2
kNk2

2kx� yk2
2: ð13Þ

Adding (12) and (13) yields the desired result. h

Lemma 7.

(1) For any x� 2 Xy,

ðx� x�ÞTrEðxÞP EðxÞ � Eðx�Þ:
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(2) For any x� 2 X�,

ðx� x�ÞTrEðxÞP 2EðxÞ:

Proof. The first part follows from a basic property of any continuously differentiable convex function [29]. I now prove the
second part. Regarding E1ðxÞ, we have

ðx� x�ÞTrE1ðxÞ ¼ ðx� x�ÞT AT ½ðAx� bÞ � ðAx� bÞþ�

¼ ½ðAx� bÞ � ðAx� bÞþ�T ½ðAx� bÞ � ðAx� bÞþ þ ðAx� bÞþ � ðAx� � bÞ�

¼ kðAx� bÞ � ðAx� bÞþk2
2 þ ½ðAx� bÞ � ðAx� bÞþ�T ½ðAx� bÞþ � ðAx� � bÞ�P 2E1ðxÞ

where Lemma 2 is used. Similarly we can show that

ðx� x�ÞTrE3ðxÞ ¼ hNðxÞ � NðxÞþ;NðxÞ � Nðx�ÞiP 2E3ðxÞ:

Regarding E2ðxÞ, we have

ðx� x�ÞTrE2ðxÞ ¼ ðCx� Cx�ÞTðCx� dÞ ¼ 2E2ðxÞ:

Adding the above three equations yields the desired result. h

The following theorem can be established similarly to Theorem 2 in Xia et al. [14].

Theorem 3. The sequence fxkg generated by (11) is globally convergent to a point in Xy if 0 < g 6 1=q where

q ¼ kAT Aþ CT Ck2 þ kNk
2
2

with N defined in Lemma 6.

Proof. From Lemma 6 we have

Eðxkþ1Þ 6 EðxkÞ þ ðxkþ1 � xkÞTrEðxkÞ þ 1
2
kAT Aþ CT Ck2 þ kNk

2
2

� 	
kxkþ1 � xkk2

2:

Substituting (11) into above yields

Eðxkþ1Þ 6 EðxkÞ � gkrEðxkÞk2
2 þ

g2

2
kAT Aþ CT Ck2 þ kNk

2
2

� 	
krEðxkÞk2

2:

Therefore the sequence fEðxkÞg is monotonically deceasing and bounded above. Moreover,

krEðxkÞk2
2 6

2
gð2� qgÞ ðEðx

kÞ � Eðxkþ1ÞÞ:

Then

Xm

k¼1

krEðxkÞk2
2 6

2
gð2� qgÞ

Xm

k¼1

ðEðxkÞ � Eðxkþ1ÞÞ ¼ 2
gð2� qgÞ ðEðx

1Þ � Eðxmþ1Þ;

which implies
P1

k¼1krEðxkÞk2
2 6 þ1 and

lim
k!1
krEðxkÞk2 ¼ 0:

Then, for any x� 2 Xy,

kxkþ1 � x�k2
2 ¼ kxk � x�k2

2 þ g2krEðxkÞk2
2 � 2gðxk � x�ÞTrEðxkÞ

6 kxk � x�k2
2 þ

2g
2� qg

ðEðxkÞ � Eðxkþ1ÞÞ � 2gðxk � x�ÞTrEðxkÞ:

It follows from the first part of Lemma 7 that

kxkþ1 � x�k2
2 6 kxk � x�k2

2 þ
2g

2� qg
ðEðxkÞ � Eðxkþ1ÞÞ � 2gðEðxkÞ � Eðx�ÞÞ

6 kxk � x�k2
2 � 2g 1� 1

2� qg

� �
ðEðxkÞ � Eðx�ÞÞ � 2g

2� qg
ðEðxkþ1Þ � Eðx�ÞÞ:

Since 1� 1=ð2� qgÞP 0; kxkþ1 � x�k2 6 kxk � x�k2 thus fxkg is bounded. Then there exists a subsequence fxkig such that
limi!1xki ¼ x̂. If follows that

lim
i!1
krEðxki Þk2 ¼ krEðx̂Þk2 ¼ 0
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since krEðxÞk2 is continuous. Therefore x̂ 2 Xy. Finally, because kxkþ1 � x̂k2 6 kxk � x̂k2, the sequence fxkig has only one accu-
mulation point and thus limk!1xk ¼ x�: h

Regarding the proof of Theorem 3, I should remark that, to ensure limk!1krEðxkÞk2 ¼ 0, the step size g can be chosen as
g < 2=q. The tighter upper bound 1=q is used to ensure the boundedness of xk. If the boundedness of xk can be ensured by
some other conditions, then a looser upperbound 2=q can be used. See the following result, which follows from Theorem 3
directly.

Corollary 2. If Xy is bounded, then the sequence fxkg generated by (11) is globally convergent to a point in Xy by choosing
0 < g < 2=q where q is defined in Theorem 3.

According to Theorem 3 and Corollary 2 we have the following results about the discrete-time system (11) for solving (3).

Corollary 3.

(1) If (3) is solvable, i.e., X�–;, then the sequence fxkg generated by (11) is globally convergent to a point in X� by choosing
0 < g 6 3=ð2qÞ, where q is defined in Theorem 3.

(2) If X� – ; is bounded, then the sequence fxkg generated by (11) is globally convergent to a point in X� by choosing
0 < g < 2=q, where q is defined in Theorem 3.

Proof. In both cases, there obviously exists at least one finite solution x� 2 X�. The first part of the corollary can be proved in
the same way as proving Theorem 3 by using the second part instead of the first part of Lemma 7. The second part of the
corollary is an immediate consequence of Corollary 2. h

Remark 2. If the LMI is absent in (3), Corollary 3 reduces to Theorem 2 and Corollary 1 in Xia et al. [14]. In other words, [14]
does not ascertain the global convergence of the corresponding dynamic system when (3) without LMI is unsolvable; while
this result can be ascertained according to Theorem 3 and Corollary 2.

According to Corollary 3, if the discrete-time dynamic system (11) does not converge to a solution of (3) with the step size
0 < g 6 3=ð2qÞ, it implies that (3) admits no feasible solutions. If the step size is chosen smaller, such as g 6 1=q, according
to Theorem 3, the dynamic system can always converge to a point that corresponds to the least square error of (3), i.e., a
minimum of E defined in (7).

Remark 3. In order to guarantee the global convergence of the dynamic system, the choice of the step size g in discrete-time
dynamic system (11) should depend on the problem parameters A;C;Ni, while there is no such a restriction on the scaling
factor l in the continuous-time dynamic system (10). It is worth mentioning that, similar to Xia et al. [14], some globally
convergent variants of (11) can be figured out with step size independent of the problem parameters. As there are no obvious
advantages with such variants over (11) in terms of convergence conditions as well as convergence rates, those results are
not discussed here. Interested readers may refer to Section 4 of Xia et al. [14] for details.

4. Simulation examples

Example 1. Consider a problem (3) with

A ¼
1 1 0 3
�2 1 1 0

� �
; b ¼

5
�10

� �
; C ¼

1 0 2 �3
�2 1 0 2
0 0 �1 �3

0
B@

1
CA; d ¼

0
0
0

0
B@

1
CA; N0 ¼

�5 0
0 �5

� �
;

N1 ¼
2 �2
�2 0

� �
; N2 ¼

3 0
0 1

� �
; N3 ¼

0 �6
�6 2

� �
; N4 ¼

0 �1
�1 3

� �
:

I first used the continuous-time dynamic system (10) to solve the problem. The function ‘‘ode45” in MATLAB was adopted
as the ODE solver. Experiments showed that (10) was always convergent to a solution with any choice of l > 0 from any
initial point x0 2 R4. For example, Fig. 2 displays the results of one of these experiments, where l ¼ 104 and the trajectories
converged to a solution x� ¼ ð3:4665;6:1628;�1:1555; 0:3852ÞT . The eigenvalues of the resulting LMI, i.e., Nðx�Þ, are 20.429
and 0.000, which indicates that x� is a nonstrict LMI solution.

Then, I used the discrete-time dynamic system (11) to solve the problem. According to Corollary 3, the step size should be
chosen as g ¼ 3=ð2qÞ ¼ 0:012. Simulations showed that with this g (11) was always convergent to a solution of the problem
from any initial point x0 2 R4. For example, Fig. 3 displays the trajectories of (11) (continuous lines) from a random initial
point, which converged to a solution x� ¼ ð4:8279;8:5829;�1:6093;0:5364ÞT . It is worth mentioning that Corollary 3 just
gives a sufficient condition for ensuring the convergence of the system. It is possible that the system is still convergent if
g > 3=ð2qÞ. For instance, the dashed lines in Fig. 3 depict the trajectories of (11) with g ¼ 0:07 from the same initial point as
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that for the continuous lines. Clearly, the trajectories converged to the same solution x�, but with a higher speed. However,
when g was increased further, e.g., g ¼ 0:08, the trajectories diverged to infinity.

Example 2. Consider solving the generalized Lyapunov inequality (2) with

A ¼
�1 0 0
2 �1 0
0 0 �4

0
B@

1
CA; B ¼

2 0 �2
0 1 3
0 0 1

0
B@

1
CA; D ¼

3 0 2
0 3 0
2 0 1

0
B@

1
CA:

The strict LMI (2) can be converted to the following nonstrict LMI and then solved by using the proposed dynamic system
methods,

BPAþ AT PBT þ Dþ �I 6 0; P � �I P 0; ð14Þ

0 1 2 3 4 5
x 10−3

−6

−4

−2

0

2

4

6

8

10

Time t

Fig. 2. Transient behavior of the continuous-time dynamic system (10) for solving the problem in Example 1.

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

Step k

Fig. 3. Transient behavior of the discrete-time dynamic system (11) for solving the problem in Example 1 with different step sizes from the same initial
point.
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where I denotes the identity matrix and � is a sufficiently small positive number. Based on Proposition 1, the new LMI can be
easily converted into the canonical form (1). Note that because PT ¼ P, there are six independent variables in P, which can be
represented by xi; i ¼ 1; . . . ;6. I have simulated the continuous-time dynamic system (10) to solve the resulting nonstrict LMI
with � ¼ 0:01. All simulations showed that the system with any choice of l was globally convergent to a solution of the LMI.
For instance, Fig. 4 depicts the trajectories of the system with l ¼ 104 from a random initial point, and the trajectories con-
verged to x� ¼ ð2:7557;0:4308;0:2924;2:5878;�0:3456;0:1367ÞT , i.e.,

P� ¼
2:7557 0:4308 0:2924
0:4308 2:5878 �0:3456
0:2924 �0:3456 0:1367

0
B@

1
CA:

It was calculated eigðP�Þ ¼ f0:0431;2:3264;3:1107g and eigðBP�Aþ AT PP�BT þ DÞ ¼ f�0:8172;�0:0104;�0:0099g, which
indicates that the LMI (1) is strictly feasible.

0 0.2 0.4 0.6 0.8 1
x 10−3

−5

−4

−3

−2

−1

0

1

2

3

4

Time t

Fig. 4. Transient behavior of the continuous-time dynamic system (10) for solving the first problem in Example 2.

0 0.5 1 1.5 2
x 10−3

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time t

Fig. 5. Transient behavior of the continuous-time dynamic system (10) from 10 random initial points for solving the second problem in Example 2.
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Then, A was changed to the identity matrix, while B and D were kept the same as before. The continuous-time dynamic
system (10) was simulated to solve the LMI (14) again. It was shown that the dynamic system always converged to a point
which does not solve the LMI no matter how small � was (even when � ¼ 0). Fig. 5 depicts the transient behavior of the
system in solving (14) with � ¼ 0 from 10 random initial points in R6, where l was set to 104. The trajectories converged to
x� ¼ ð�1:1317;0:1850;�0:4551;�0:2236;�0:3959;0:1832ÞT , which is the unique minimum of the corresponding energy
function EðxÞ defined in (7), but is not a solution of the LMI. This implies that the LMI (2) does not have a solution.

Example 3. Finally, let us consider solving a maximum eigenvalue minimization problem [2] by using the proposed meth-
ods. Suppose that the symmetric matrix WðxÞ depends affinely on x 2 Rm : WðxÞ ¼W0 þ

Pm
i¼1Wixi, where Wi 2 Sn. The prob-

lem of minimizing the maximum eigenvalue of the matrix WðxÞ can be cast into a semidefinite programming problem

minimize s

subject to sI �WðxÞP 0
ð15Þ

with variables s 2 R and x 2 Rm. According to the discussion in Section 2, the problem can be further cast into problem (3)
with mþ 1þ nðnþ 1Þ=2 variables. For example, let

W0 ¼

5 0 3 �1
0 �5 2 0
3 2 �1 4
�1 0 4 0

0
BBB@

1
CCCA; W1 ¼

�2 0 0 0
0 0 0 0
0 0 3 0
0 0 0 1

0
BBB@

1
CCCA; W2 ¼

2 �2 0 0
�2 �5 1 1
0 1 6 2
0 1 2 �3

0
BBB@

1
CCCA; W3 ¼

1 0 2 �5
0 2 0 0
2 0 �2 0
�5 0 0 5

0
BBB@

1
CCCA:

First, the continuous-time dynamic system was simulated to solve the problem. All simulations showed that the system
was convergent to the unique solution x� ¼ ð0:7822;�1:1538;�0:2579ÞT of (15). Fig. 6 demonstrates the trajectories of the
mþ 1þ nðnþ 1Þ=2 ¼ 14 variables starting from a random initial point, which converged to x�. The same solution was
obtained by simulating the discrete-time dynamic system (11).

5. Concluding remarks

Two dynamic system methods are presented in the paper for solving linear matrix inequalities (LMIs) and linear vector
equalities and inequalities. One is of continuous-time type and the other is of discrete-time type, both of which are advan-
tageous for their simple numerical implementation characteristics and capability for handling nonstrict LMIs easily. A more
promising potential of the methods is the recurrent neural network realization of them, hybridized with some high perfor-
mance computing units for matrix factorization, while such units can be either digital equipments or some other neural net-
works. The global convergence and stability of both dynamic systems are analyzed rigorously, and then substantiated by
several numerical examples.

However, the paper just lays some theoretical foundations and presents some preliminary simulation results. The value of
this work is worth further investigation. For instance, based on Theorem 1, many efficient unconstrained optimization algo-

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

Time t

Fig. 6. Transient behavior of the continuous-time dynamic system (10) for solving the problem in Example 3.
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rithms can be specialized to solve LMIs; but what are their characteristics? For another instance, based on the projection
techniques utilized in the paper and the techniques in Refs. [15,17], it seems quite possible to design some dynamic system
to solve nonlinear semidefinite programming problems. These are my future researches.
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