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Abstract—There exist many recurrent neural networks for solving
optimization-related problems. In this paper, we present a method for
deriving such networks from existing ones by changing connections be-
tween computing blocks. Although the dynamic systems may become much
different, some distinguished properties may be retained. One example
is discussed to solve variational inequalities and related optimization
problems with mixed linear and nonlinear constraints. A new network is
obtained from two classical models by this means, and its performance
is comparable to its predecessors. Thus, an alternative choice for circuits
implementation is offered to accomplish such computing tasks.

Index Terms—Asymptotic stability, global convergence, linear program-
ming (LP), optimization, quadratic programming (QP), recurrent neural
network (RNN), variational inequality.

I. INTRODUCTION

In recent years, much interest has emerged for designing recurrent
neural networks (RNNs) for solving optimization-related problems
(for example, see [1]–[20] and the references therein). Such neurody-
namic systems have found many applications in signal processing [21]
and intelligent control [22]–[25]. However, most of these networks
were individually developed, and a general framework about how new
models can be designed was seldom discussed, except in [2], to the
best of the authors’ knowledge. In this paper, we aim at giving a
novel perspective on the RNN design methodology. The idea is to
obtain new networks by changing connections in existing networks.
The new networks may have distinct advantages in some aspects and
therefore offer different choices for circuits implementation. The idea
will be made clear by showing how a new model for solving variational
inequalities and related optimization problems can be derived from
two classical networks. We hope that this method can be generalized
to other existing RNNs (e.g., [7], [13], and [17]) and stimulate the
emergence of various groups of new networks.

Consider solving the following nonlinear variational inequality [26].
Find a vector x∗ ∈ Ω such that

(x− x∗)TF (x∗) ≥ 0 ∀x ∈ Ω (1)

where

Ω = {x ∈ X|g(x) ≤ 0, Ax = b} .
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In addition, x = (x1, . . . , xn)T ∈ �n, F : �n → �n is an n-
dimensional vector-valued function, g(x) : �n → �m is an m-
dimensional vector-valued function, A ∈ �r×n, b ∈ �r are constants,
and X is a nonempty box set defined as X = {x ∈ �n|li ≤ xi ≤
hi, i = 1, . . . , n} (some li’s can be −∞, and some his can be
+∞). The function F (x) is continuous on �n, whereas the functions
g1(x), . . . , gm(x) are convex onX and are continuously differentiable
on an open set X̂ that contains X .

Note that, if a continuously differentiable scalar function f(x)
is pseudoconvex on Ω, then the following optimization problem is
equivalent to the variational inequality (1), with F = ∇f , i.e., the
gradient of f [26]:

minimize f(x) subject to x ∈ Ω. (2)

There are two representatives of the state-of-the-art RNNs for
solving the variational inequality (1), as proposed in [4] and [5],
respectively:

d

dt

(
x
y
z

)
= −λ

(
x− PX

(
x− α

(
F (x) + ∇g(x)T y −ATz

))
y − ỹ
Ax− b

)
(3)

d

dt

(
x
y
z

)
= −λ

(
2(x− v)
y − ỹ
Ax− b

)
(4)

where ỹ = (y + g(x))+, v = PX(x− α(F (x) + ∇g(x)T ỹ −AT

(z −Ax+ b))), λ > 0, α > 0, ∇g(x) = (∇g1(x), . . . ,∇gm(x))T ,
and PX(·) and (·)+ are two projection operators (see [4] for defini-
tions). Note that α in (3) and (4) was set to one in [4] and [5]. However,
it is easy to verify that, when α 
= 1, the stability results of the two
networks in [4] and [5] are still valid. Moreover, it was found that
tuning this parameter can offer advantages to RNN (4) [8].

The block diagrams of the two networks are depicted in Fig. 1.
It is shown that the types and the numbers of basic elements in
the two networks are nearly the same. The only difference is that
the model (4) entails 2r more connections and one more summator
than (3) [see Fig. 1(b), bottom right]. Nevertheless, both models have
O(n2 +mn+ nr) connections; thus, when the scale of the problem
gets large, the 2r additional connections in (4) do not much affect the
complexity. In this sense, in general, hardware realizations of the two
models entail equal effort.

II. MAIN RESULTS

In this section, we present a new RNN for solving (1), which is
obtained from RNNs (3) or (4) by changing some connections in
their diagrams. Then, we will discuss a special case of the proposed
network for solving linear programming problems (LPs) and quadratic
programming problems (QPs).

A. Architecture

The new model can be obtained by changing the starting point of
the first dashed line in Fig. 1(a) (counted in a top–down manner and
with the same convention in what follows) from S1 to S1′ and the
starting point of the second dashed line from S2 to S2′. Meanwhile,
the scaling factors of the first and third integrators need to be changed

1083-4419/$26.00 © 2009 IEEE
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Fig. 1. Block diagrams of RNNs (3)–(5). In (a), if the two dashed lines are connected (i.e., starting from points S1 and S2, respectively) and β1 = β2 = β3 = λ,
then the diagram depicts network (3); if the starting points of the two dashed lines are, respectively, changed to points S1′ and S2′, whereas β1 = β3 = 2λ,
β2 = λ, then the diagram depicts network (5). For clarity, the scaling factor α in these networks is set to 1. (a) RNN (3) or (5). (b) RNN (4).

from λ to 2λ for analysis. Then, the dynamic equations of the model
become

d

dt

(
x
y
z

)
= −λ

(
2(x− x̃)
y − ỹ

2(Ax̃− b)

)
(5)

where x̃ = PX(x− α(F (x) + ∇g(x)T ỹ −AT z)), and the other no-
tations are the same as in (3) and (4).

Note that this model can also be obtained from (4) by changing some
connections in Fig. 1(b). In addition, it is easy to see that RNNs (3) and
(4) can be transformed into each other this way. In this sense, the three
models share the same structural complexity.

B. Stability Analysis

We now show that the new model is also comparable to (3) and (4)
in terms of performance to solve the variational inequality (1).

Some notations and assumptions are first introduced. X̂ denotes an
open set that contains X , ‖ · ‖ denotes the Euclidean norm, and U∗

denotes the equilibrium set of RNN (5). Throughout this paper, it is
assumed that (1) has at least one finite solution and satisfies the Slater
condition, i.e., there exists a point x† such that g(x†) < 0, Ax† = b,
and l < x† < h.

Definition 1: F is said to be a gradient mapping on a set C if there
exists a differentiable function f : C → � such that ∇f(x) = F (x)
for any x ∈ C.

Throughout this paper, it is assumed that F (x) and ∇g(x) are
locally Lipschitz continuous on an open set X̂ that containsX . If F (x)
and ∇g(x) are continuously differentiable on X̂ , then this assumption
holds. The following two assumptions will be referred to in later
discussion.
A1.F (x) is co-coercive at one finite solution x∗ of (1) with respect

to X with modulus ν > 0, i.e., (x− x∗)T (F (x) − F (x∗)) ≥
ν‖F (x) − F (x∗)‖2 for any x ∈ X .

A2.F (x) is monotone at one finite solution x∗ of (1) with respect to
X , i.e., (x− x∗)T (F (x) − F (x∗)) ≥ 0 for any x ∈ X .

Note that A1 implies A2 but not vice versa. If F (x) is monotone on
X [26], then A2 holds; however, the converse is not true. If a scalar
function f(x) is continuously differentiable on X̂ , then it is convex on
X if and only if ∇f(x) is monotone on X [26].

First, it is easy to verify the following property of the new model by
considering the Karush–Kuhn–Tucker conditions (see [4]).

Theorem 1: A point x∗ is a solution of (1) if and only if there
exist y∗ and z∗ such that ((x∗)T , (y∗)T , (z∗)T )T is an equilibrium
point of (5).

It is assumed that (1) has at least one finite solution; thus, according
to Theorem, 1 there exists at least one finite point in U∗.

The following three lemmas can similarly be established as in
[5, Lemma 3], [8, Lemma 4], and [5, Theorem 2], respectively. For
brevity, the details are omitted.

Lemma 1: Consider the following function:

V1(u) = α
(
φ(u) − φ(u∗) − (u− u∗)T∇φ(u∗)

)
+

1

2

(
‖x− x∗‖2 + α‖y − y∗‖2 + α‖z − z∗‖2

)
(6)

where α > 0, u = ((x)T , (y)T , (z)T )T , u∗ = ((x∗)T , (y∗)T ,
(z∗)T )T ∈ U∗ is a finite point, and φ(u) = ‖ỹ‖2/2. It has the
following three properties.

1) V1(u) is convex on X ×�m+r and is continuously differen-
tiable on X̂ ×�m+r .

2) V1(u) ≥ min(1, α)‖u− u∗‖2/2 for all u ∈ X ×�m+r .
3) ∇V1(u)

TG(u) ≥ 2‖x − x̃‖2 + α‖y − ỹ‖2 + 2α(x̃ − x∗)T

(F (x) − F (x∗)) for all u ∈ X ×�m+r , where

G(u) =

(
2(x− x̃)
y − ỹ

2(Ax̃− b)

)
.

Lemma 2: Assume that F is a gradient mapping onX . Consider the
following function:

V2(u) = α
(
ψ(u) − ψ(u∗) − (u− u∗)T∇ψ(u∗)

)
+

1

2

(
‖x− x∗‖2 + α‖y − y∗‖2 + α‖z − z∗‖2

)
(7)

where ψ(u) = f(x) + ‖ỹ‖2/2, with ∇f(x) = F (x), and the other
notations are the same as in Lemma 1. It has the following three
properties.

1) V2(u) is convex on X ×�m+r and is continuously differen-
tiable on X̂ ×�m+r .

2) V2(u) ≥ min(1, α)‖u− u∗‖2/2 for all u ∈ X ×�m+r .
3) ∇V2(u)

T G(u) ≥ 2‖x− x̃‖2 + α‖y − ỹ‖2 + 2α(x− x∗)T ×
(F (x) − F (x∗)) for all u ∈ X ×�m+r , whereG(u) is defined
in Lemma 1.
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Lemma 3: Suppose that A1 holds. Then, for any initial point,
u(t0) = (x(t0)

T , y(t0)
T , z(t0)

T )T ∈ X ×�m+r , RNN (5), with
α < 4ν, has a unique bounded continuous solution x(t) for all t ≥ t0,
and x(t) stays in X forever.

Now, we are in a position to state the main results of the pro-
posed RNN.

Theorem 2: Suppose that A1 holds. Then, RNN (5) is stable in the
sense of Lyapunov, with α < 4ν, and its trajectory u(t) converges to
U∗ with any u(t0) ∈ X ×�m+r . Furthermore, if A1 holds at any
solution of (1), then the trajectory converges to an exact point in U∗. In
particular, if there is only one point in U∗, the RNN is asymptotically
stable.

Proof: Consider the function V1(u(t)) as defined in (6), where
x∗ satisfies A1. According to Lemmas 1 and 3, for any initial point
u(t0) ∈ X ×�m+r , we have

dV1(u(t))

dt
≤−λ

(
2− α

2ν

)
‖x−x̃‖2−λα‖y−ỹ‖2≤0 ∀t≥t0

by noticing

(x̃− x∗)T (F (x) − F (x∗))

= (x̃− x+ x− x∗)T (F (x) − F (x∗))

≥ −‖x− x̃‖ ‖F (x) − F (x∗)‖ + ν ‖F (x) − F (x∗)‖2

≥ − 1

4ν
‖x̃− x‖2.

Therefore, the neural network is stable in the sense of Lya-
punov. According to the LaSalle invariance principle, u(t) con-
verges to the largest invariant set M in {u ∈ �n+m+r|dV1(u)/
dt = 0}. In what follows, we show that M = U∗. Clearly, any point
in U∗ also belongs to M. Consider any point u ∈ M. We have
dV1/dt = 0; thus, x = x̃, and y = ỹ from the aforementioned equa-
tion, which implies that dx/dt = −2λ(x− x̃) = 0 and dy/dt =
−λ(y − ỹ) = 0. It follows that x is in a steady state (a constant) and
so is x̃. Denote Ax̃− b by c, where c is a constant. If c 
= 0, then
dz/dt = −2λc, and z → ∞ when t→ +∞, which contradicts the
boundedness of u(t). Consequently, c = 0, and dz/dt = 0. It follows
that u ∈ U∗, and hence, M = U∗.

Because u(t) is bounded over [t0,+∞), there exists a convergent
subsequence t0 < · · · < tn < tn+1 < · · · such that

lim
k→+∞

u(tk) = û û ∈ U∗.

Define another Lyapunov function V̂ (u) to be the same as V1(u)
in (6), except that u∗ in V1(u) is replaced with û. If A1 holds at any
solution of (1), it is easy to see that V̂ (u) decreases along the trajectory
of (5) and satisfies V̂ (û) = 0. Therefore, for any ε > 0, there exists
q > 0 such that, for all t ≥ tq

min(1, α) ‖u(t) − û‖2 /2 ≤ V̂ (u(t)) ≤ V̂ (u(tq)) < ε

i.e., limt→+∞ u(t) = û.
In particular, if U∗ contains a unique point, based on the aforemen-

tioned analysis, the neural network is asymptotically stable. The proof
is completed. �

The following theorem reveals that, when F is a gradient mapping,
the convergence of the proposed RNN need not impose restrictions on
the scaling factor α.

Theorem 3: Suppose that A2 holds. If F is a gradient mapping on
X , then RNN (5) is stable in the sense of Lyapunov, and its trajectory
u(t) converges to U∗ with any u(t0) ∈ X ×�m+r . If, in addition,
A2 holds at any solution of (1), then u(t) converges to an exact point

in U∗. In particular, if there is only one point in U∗, the RNN is
asymptotically stable.

Proof: The results can be established by defining a Lyapunov
function V2(u) in Lemma 2, in which u∗ satisfies A2 and following
a similar reasoning procedure for Theorem 2. �

C. Comparisons With Existing Models

We now compare the theoretically guaranteed performances of the
new model (5) with its predecessors (3) and (4). First, by comparing
Theorems 2 and 3 in this paper with [5, Theorem 3] and [8, Theorems
3 and 4], it is shown that the stability results of (4) and (5) are exactly
the same. Some major results of (3) are listed in Theorem 4, which
are collected from [4], [16], and [27]. In these results, gj(x) (j =
1, . . . ,m) is not assumed to be convex on X in general.

Theorem 4: Suppose that F (x) and ∇g(x) are locally Lipschitz
continuous in �n. If any of the following statements is true, then
the state trajectory of RNN (3), with u(t0) ∈ X ×�m

+ ×�r , where
�m

+ denotes the nonnegative quadrant of �m, converges to an exact
solution of (1).

1) F (x) and ∇gj(x) (j = 1, . . . ,m) are monotone on X , and
∇F (x∗) is positive definite.

2) F (x) and ∇gj(x) (j = 1, . . . ,m) are monotone on X , and
there exists a nonnegative vector p = (p1, . . . , pm)T ≤ y∗ such
that ∇F (x) +

∑m

j=1
∇2gj(x)pj is positive definite on X;

y(t0) ≥ p.
3) F (x) + ∇g(x)T y(t) is monotone on X , and ∇F (x∗) is posi-

tive definite.
4) ∇F (x) +

∑m

j=1
∇2gj(x)yj(t) is positive definite on X .

5) F (x) is a gradient mapping on X , and ∇F (x) +∑m

j=1
∇2gj(x)yj is positive semidefinite on X × Y ,

where Y = {yζ = (1 − ζ)y∗ + ζy(t) ∈ �m|0 ≤ ζ ≤ 1},
and ∇F (x∗) +

∑m

j=1
∇2gj(x

∗)y∗j is positive definite.

In these results, x∗ denotes a finite solution of (1), y∗ denotes the
corresponding Lagrange multiplier (see Theorem 1), and y(t) is a part
of the state trajectory u(t) of the network.

From Theorem 4, it can be seen that a notable merit of (3) refers
to its capability to solve some nonmonotone variational inequalities
(1) and nonconvex optimization problems (2). However, none of
the results guarantees that the network can solve degenerate convex
optimization problems, including LP problems (see Examples 2 and 3
in Section III); in contrast, both RNNs (4) and (5) have this capability.
One of the demerits of RNNs (4) and (5), however, is that, if F is not
a gradient mapping, an upper bound restriction on the scaling factor
α has to be imposed, which is not required by (3). In summary, with
regard to the stability results, there is no simple conclusion as to which
model (3)–(5) is the best.

D. Special Case

Consider solving the following QP problem:

minimize
1

2
xTQx+ pTx

subject to Ax = b Cx ≤ d x ∈ X (8)

whereQ = QT ∈ �n×n, p ∈ �n, C ∈ �m×n, d ∈ �m, and the other
notations are the same as in (1). If Q = 0, the problem degenerates to
an LP problem. The architectures of the three networks (3)–(5) for
solving the problem are illustrated in Fig. 2. In contrast to Fig. 1,
scalar forms of the dynamic equations are depicted in the figure,
where {qij}n×n = Q, {aij}r×n = A, {cij}m×n = C, {pi}n×1 =
p, {bi}r×1 = b, and {di}m×1 = d.
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Fig. 2. Block diagrams of the RNNs (3)–(5) and (9) for solving (8). (a) Basic blocks with their input and output ports, where i = 1, . . . , n, j = 1, . . . , m, and
k = 1, . . . , r. (b)–(e) Blocks should be connected to constitute RNNs (3)–(5) and (9), respectively. The output ports that are surrounded by dashed rectangles do
not need to be connected to other ports in the corresponding configuration. The gain factors differ in these configurations: (b) β1 = β2 = β3 = λ, (c) β1 = 2λ,
β2 = β3 = λ, (d) β1 = β3 = 2λ, β2 = λ, and (e) β1 = λ, β2 = β3 = 2λ. For clarity, the scaling factor α in the networks is set to one.

Recently, we have devised another RNN for solving (8), which was
also obtained by changing some connections in RNNs (3) and (4) [20].
The dynamic equations are given as follows:

d

dt

(
x
y
z

)
= −λ

(
x− x̄

2 (y − (y + Cx̄− d)+)
2(Ax̄− b)

)
(9)

where x̄ = PX(x−Qx− p− CT y +AT z), and λ > 0. The archi-
tecture of the network is also illustrated in Fig. 2.

In Fig. 2, it is shown that switching between these four networks
entails simply changing several gain factors and starting positions of
some connections, which implies that circuits implementations of the
networks entail the same number of computing elements. The only
difference is that RNN (4) entails an additional summation operation
[i.e., the summator just before the port “OUT6” in Fig. 2(a)] compared
with other networks. With regard to the performance for solving (8),
if Q is positive definite, then all of the four networks can converge
to a solution of the problem from any initial point; if Q is only
positive semidefinite (e.g., Q = 0), however, only RNNs (4), (5), and
(9) are guaranteed to solve the problem. The stability results of the
networks are formally stated as follows, which directly follow from
Theorems 3, 4, [5, Theorem 3], and [20, Theorem 2].

Corollary 1:

1) If Q is positive definite, then RNN (3) for solving (8) is stable in
the sense of Lyapunov, and the trajectory u(t) converges to an
exact point in U∗ with any u(t0) ∈ X ×�m

+ ×�r . In particu-
lar, if there is only one point in U∗, the RNN is asymptotically
stable.

2) If Q is positive semidefinite, then RNNs (4), (5), and (9)
for solving (8) are stable in the sense of Lyapunov, and the
trajectories u(t) converge to an exact point in U∗ with any
u(t0) ∈ �n+m+r . In particular, if there is only one point in U∗,
the RNNs are asymptotically stable.

Fig. 3. State trajectories of RNN (5), with α = 0.03, λ = 1, and u(0) =
(−4, 7,−3, 3,−8)T in Example 1.

III. ILLUSTRATIVE EXAMPLES

We then illustrate the theoretical results of the proposed RNN
by a few examples. The numerical simulations were conducted in
MATLAB.

Example 1: Consider solving the variational inequality (1) with
F = Mx+ p, where

M =

(
2 −2 1
0 4 2
1 −1 5

)
p =

(
8
0
5

)
.

In addition, X = �3
+, g(x) = x3

1 − 2x2 − 4x3+5, A = (2,−5,−1),
and b = −10. It is easy to check that g(x) is convex on X = �3

+

and A1 holds at any solution of the problem. In addition, ν can be
chosen as θmin/θmax = 1.254/31.835 = 0.039, where θmin and
θmax are, respectively, the minimum eigenvalue of (M +MT )/2 and
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Fig. 4. State trajectories of RNN (3), with α = λ = 1 and u(0) =
(4, 1, 3,−4)T in Example 2.

the maximum eigenvalue of MTM . According to Theorem 2, RNN
(5) should converge to U∗, with α < 0.039, starting from any initial
point u(0) ∈ �3

+ ×�2. All simulations verified this fact and indicated
that there is only one point in U∗, i.e., u∗ = (0.0000, 1.9445, 0.2788,
0.7652,−1.3656)T . In addition, note that, even with x(0) /∈ X , the
RNN still always converged to u∗. Fig. 3 shows such an example. This
phenomenon indicates that the stability results in this paper leave space
for improvement.

Example 2: Consider the following problem:

minimize f(x) =
1

3
(x1 + x2 + x3)

3 − 6x2 + x3

subject to x1 + x2 − x3 ≤ 0 0 ≤ x ≤ 5.

It is easy to check that ∇2f(x) is always positive semidefinite only
on �3

+ which implies that f is convex but not strictly convex on �3
+.

RNN (3) may not solve the problem. The experiments verified this
point. Fig. 4 shows a simulation, from which it can be seen that some
components of the state trajectory u(t) oscillate and do not converge
to steady values. On the contrary, RNN (5) can solve the problem.
According to Theorem 3, RNN (5), with F = ∇f , should converge
to a solution from any u(0) ∈ [0, 5]3 ×�. The simulation results are
consistent with the prediction. Fig. 5 depicts the trajectory-evolving
process in one of many runs. The trajectories converge to the unique
equilibrium point, i.e., u∗ = (0.0000, 0.7906, 0.7906, 3.5000)T . The
same solution was obtained using RNN (4).

Example 3: To show that RNN (3) may fail on some LP prob-
lems, we consider solving a special case of (8), in which Q = p =
C = d = b = 0, X = �, and A = 1. Obviously, the correct solution

Fig. 5. State trajectories of RNN (5), with α = λ = 1 and u(0) =
(4, 1, 3,−4)T in Example 2.

should be x∗ = 0. If we let λ = α = 1, the dynamic equations of (3)
become

d

dt

(
x

z

)
=

(
z

−x

)
.

The equations are simple; thus, the solution can analytically be
obtained as follows:{

x(t) = x0 cos t+ z0 sin t

z(t) = −x0 sin t+ z0 cos t

where (x0, z0)
T is the initial state. Clearly, if x0 
= 0, z0 
= 0, the

solution will never converge to a steady state. Similarly, we can write
down the simplified dynamic equations (4), (5), and (9) for solving the
problem as

d

dt

(
x

z

)
=

(
2z − 2x

−x

)

d

dt

(
x

z

)
=

(
2z

−2x− 2z

)

d

dt

(
x

z

)
=

(
z

−2x− 2z

)

and derive their closed-form solutions, respectively, as in the equation
shown at the bottom of the page. Obviously, from any initial state, the
three networks will all converge to (0, 0)T , which corresponds to the
correct solution of the problem.

(
x(t)

z(t)

)
=

(
e−t(cos t− sin t) 2e−t sin t

−e−t sin t e−t(cos t+ sin t)

)(
x0

z0

)
(
x(t)

z(t)

)
=

( 1
3
e−t
(
3 cos

(√
3t
)

+
√

3 sin
(√

3t
))

2
3

√
3e−t sin

(√
3t
)

− 2
3

√
3e−t sin

(√
3t
)

1
3
e−t
(
3 cos

(√
3t
)
−√

3 sin
(√

3t
)))(x0

z0

)
(
x(t)

z(t)

)
=

(
e−t(cos t+ sin t) e−t sin t

−2e−t sin t e−t(cos t− sin t)

)(
x0

z0

)
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IV. DISCUSSION

The aim of this paper has been to provide a novel perspective for
designing RNNs for solving optimization and related problems: new
salient models can be obtained by changing connections in existing
ones without resorting to additional computing units. One example
network has been presented, which is derived from two classical
models [4], [5] for solving variational inequalities. It has been shown
to be comparable to the two models in terms of both structure and
performance for solving such problems. Therefore, it enriches the
family of RNNs for solving related problems and offers flexibility to
circuits practitioners for hardware implementation. Recently, through
this method, another model has been derived from the two models [4],
[5] for solving LP and QP problems [20]. However, the generalization
of that model to solve non-LP problems or variational inequalities
encountered difficulty in stability analysis. The invention in this paper
therefore outperforms that model.

Aside from [20], we can find other RNNs for solving optimization-
related problems, which can also be deemed as derived from others
by changing connections (sometimes with a little modification to
computing units). For instance, the model in [3] for LP and QP can
be regarded as obtained from the model in [4] (see [20] for the
detailed discussion). Therefore, this idea seems to represent a general
methodology for designing groups of new RNNs. However, how could
we know which connections should be changed? Unfortunately, it is
hard to answer this question at this stage; only some hints are available.
Any useful model has to converge to its equilibrium state, which must
have a good correspondence with the solutions of the problem; thus,
we can always equate the right-hand sides of the dynamic equations to
zeros and find equivalent terms in this state. Exchanging these terms in
dynamic equations may not alter the equilibrium points of the system,
and new models can be figured out. The following two issues remain
to be examined.

• Can this term-exchanging manipulation be realized by switching
connections only?

• Are the stability results still true or even better?

It is often easier to answer the first question than the second one.
In answering the second question, we may get hints from theoretical
analysis procedures for existing models similar to what we have done
in this paper.
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