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Solving Pseudomonotone Variational Inequalities
and Pseudoconvex Optimization Problems

Using the Projection Neural Network
Xiaolin Hu, Student Member, IEEE, and Jun Wang, Senior Member, IEEE

Abstract—In recent years, a recurrent neural network called
projection neural network was proposed for solving monotone
variational inequalities and related convex optimization problems.
In this paper, we show that the projection neural network can
also be used to solve pseudomonotone variational inequalities and
related pseudoconvex optimization problems. Under various pseu-
domonotonicity conditions and other conditions, the projection
neural network is proved to be stable in the sense of Lyapunov and
globally convergent, globally asymptotically stable, and globally
exponentially stable. Since monotonicity is a special case of pseu-
domononicity, the projection neural network can be applied to
solve a broader class of constrained optimization problems related
to variational inequalities. Moreover, a new concept, called com-
ponentwise pseudomononicity, different from pseudomononicity
in general, is introduced. Under this new concept, two stability
results of the projection neural network for solving variational in-
equalities are also obtained. Finally, numerical examples show the
effectiveness and performance of the projection neural network.

Index Terms—Componentwise pseudomonotone variational
inequality, global asymptotic stability, projection neural net-
work, pseudoconvex optimization, pseudomonotone variational
inequality.

I. INTRODUCTION

VARIATIONAL INEQUALITY (VI) can be viewed as a
natural framework for unifying the treatment of equilib-

rium problems, and hence has many applications such as the
analysis of piecewise–linear resistive circuits, bimatrix equilib-
rium, economic equilibrium modeling, traffic network equilib-
rium modeling, elasticity, and structural analysis [1]–[6]. An
explosive growth in theoretical advances, algorithmic develop-
ment, and applications across many disciplines have been wit-
nessed over decades. Various numerical procedures have been
presented for solving VI with the assumption that the under-
lying operator is monontone [1], [4], [7]–[10]. When the un-
derlying operator is pseudomonotone, a weaker condition than
monotonicity, several iterative algorithms for solving it are also
available [11]–[13].

In many engineering applications such as signal processing,
system identification, and robot motion control [14], [15] real-
time solutions are often desired. But these problems may be high
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in dimension and dense in structure. Conventional numerical
methods, however, may not be efficient in such occasions due
to stringent requirement on computing time. A promising ap-
proach to handle these problems is to employ artificial neural
networks based on circuit implementation [16], [17]. Unlike
other parallel algorithms, neural networks can be implemented
physically in designated hardware such as application-specific
integrated circuits where the optimization procedure is truly par-
allel and distributed. As a result, the neural network approach for
optimization, control, and signal processing received tremen-
dous interests.

In the past two decades, the theory, methodology, and ap-
plications of recurrent neural networks for optimization have
been widely investigated since the seminal work of Hopfield
and Tank [16], [17] (see [18]–[23] and references therein). Nu-
merous neural network models have been developed, from the
earlier proposals such as the penalty method-based neural net-
work proposed by Kennedy and Chua [18], the switched-capac-
itor neural network by Rodríguez-Vázquez et al. [19] and the
deterministic annealing neural network by Wang [20], to the
latest development such as Xia and Wang et al. [21]–[23]. Re-
garding solving VI, a recurrent neural network, called projec-
tion neural network is developed in [24]–[28]. The global con-
vergence of the neural networks are always ensured by various
monotonicity conditions on the linear or nonlinear operator to-
gether with other conditions except in [26] (In [26], the conver-
gence results are expressed in terms of the Lyapunov diagonally
stability concept). Recently, Noor [31] claimed that the projec-
tion neural network can be used to solve VI by only requiring
the pseudomonotonicity of the operator. Although his work is
incomplete (a counter example to his statement will be shown
later), it suggests a possibility to solve pseudomonotone VI by
using neural networks. In this paper, we show that the projec-
tion neural network presented in [24]–[28] can indeed solve the
pseudomonotone VI under suitable assumptions. As a conse-
quence, the scope of the related optimization problems can be
enlarged from convex optimization problems to pseudoconvex
optimization problems.

The remainder of the paper is organized as follows. The
problem formulations and related preliminaries are presented
in Section II. In Section III, we discuss the stability of the pro-
jection neural network for solving the pseudomonotone VI with
box-type or sphere-type constraints and related pseudoconvex
optimization problems. The global convergence, global asymp-
totic stability, and global exponential stability of the neural
network are studied under different conditions. In Section IV,
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a set of new concepts, componentwise pseudomonotonicities
(CPM), are introduced first, which follows the discussion on
the stability of the projection neural network for solving CPM
VI. Illustrative examples are presented in Section V. Section VI
gives the conclusion of the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let be the Euclidean space, be a closed convex set in
, and be a continuous vector-valued function from

to . Consider the problem of finding such that

(1)

Problem (1) is called variational inequality, denoted by
VI . It is well known that is a solution of
VI if and only if it satisfies the relation

(2)

where is a constant and is a projection
operator defined by

(3)

In (3), denotes the -norm of .
In view of the equivalent formulation of VI in (2), the

following recurrent neural network, called projection neural net-
work for solving (1) is developed in [24]–[28]

(4)

where and are two scaling factors. Note is
a solution of VI if and only if it is an equilibrium point
of the above neural network. It is shown that under some mile
conditions, the projection neural network can be used to solve
monotone VI. In the current paper, we will show that this neural
network is in addition capable of solving pseudomonotone VI.
One of the merits of this neural network is its simplicity com-
pared to the neural network studied in [29] and [30] for solving
pseudomonotone VI.

It is seen that the projection neural network (4) involves a
projection operator . In general, computing the projection
of a point onto a convex set is itself a complex optimization
problem. However, if is a box set or a sphere set, the calcu-
lation is straightforward. For example, if

, then

Note might be and might be . If
where and are two

constants. Then

For the convenience of later discussion, it is necessary to in-
troduce several notations, definitions, lemmas, and assumptions.
In what follows, denotes the -norm of ; and denotes
the solution set of (1) or (2). If a function , then

stands for its gradient; if a function ,
stands for its Jacobian matrix.

Definition 1: A function is said to be Lipschitz
continuous with constant on the set if, for every pair of
points

(5)

is said to be locally Lipschitz continuous on if each point
of has a neighborhood such that (5) holds for every
pair of points .

Definition 2: A function is said to be pseu-
domonotone on if, for every pair of distinct points

(6)

is said to be strictly pseudomonotone on if, for every pair
of distinct points

and strongly pseudomonotone on if there exists a constant
such that for every pair of points

(7)

The aforementioned definitions of pseudomonotonicity are
easily seen as listed in an order from weak to strong. Moreover,
the pseudomonotonicity is a generalization of monotonicity, the
definition of which can be found in [27]. Clearly, monotonicity
implies pseudomononicity, strict monotonicity implies strict
pseudomononicity, and strong monotonicity implies strong
pseudomononicity, but not vice versa.

Definition 3: A differentiable function is pseu-
doconvex on if for every pair of distinct points

The function is said to be strictly pseudoconvex on if for
every pair of distinct points

and strongly pseudoconvex on if there exists a constant
such that for every pair of points

It is shown in [32] that a differentiable function is pseudo-
convex and strictly pseudoconvex if and only if its gradient
is a pseudomonotone and strictly pseudomonotone mapping,
respectively. Moreover, if its gradient is strongly pseudomono-
tone, the function is strongly pseudoconvex; however, the
converse is not true [33]. The following well-known result
reveals the relationship between pseudoconvex optimization
and VI [1], [4].
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Fig. 1. Transient behavior of the projection neural network in the counter example. (a) � = 1. (b) � = �1.

Lemma 1: Suppose is differentiable and pseu-
doconvex on . Then satisfies

if and only if is a minimum of in .
Let be the projection operator defined by (3). It has the

following properties.
Lemma 2 [1, pp. 9–10]: For any and any

(8)

For any

Note that VI does not always have a solution. For ex-
istence conditions for the solution of VI , one may refer
to [1]. Throughout this paper, we assume is nonempty and
there exists a finite .

III. PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND

PSEUDOCONVEX OPTIMIZATION

A. Existing Stability Results

Let us first recall some existing results related to our efforts.
In [31], Noor considered a more general variational inequality
problem, quasi-variational inequality problem, which includes
VI in (1) as a special case. When applied to VI, his stability
results about the dynamic system (4) read as follows.

• If is pseudomonotone and Lipschitz continuous, then
the dynamic system (4) with is stable in the Lya-
punov sense and globally converges to the solution set of
(1).

• If is Lipschitz continuous, the dynamic system (4)
with globally and exponentially converges to the
unique solution of (1).

The correctness of these results is in question. A counter ex-
ample is presented as follows. Consider the affine mapping

where

It is easily verified that is Lipschitz continuous in and
is positive semidefinite in . Hence, is mono-

tone and consequently pseudomonotone in . Let
and use the neural dynamic

system (4) to solve this VI. Fig. 1 displays the state trajectory of
(4) with the initial point and .
Clearly, when the trajectories exhibit periodic oscillations
and when the trajectories diverge to infinity. In neither
case the system converges to an equilibrium point though all re-
quired conditions in [31] are satisfied.

The aforementioned example suggests that the pseudomono-
tonicity of alone cannot guarantee the global convergence of
the projection neural network (4). It motivates us to strengthen
this condition to some extend or add some other conditions to
ensure the desired properties. These strengthened conditions
or additional conditions may include the strong pseudomono-
tonicity of , the symmetry of , the boundedness of and
so on, which are considered in Sections III-B and III-C.

B. Symmetric Jacobian Matrix of

In this section, we focus on VI with the Jacobian ma-
trix of being symmetric. The results are then applied to the
constrained pseudoconvex optimization problems.

Lemma 3 [25]: Assume that is locally Lipschitz contin-
uous in . Then, there exists a unique continuous solution
for (4) with . Moreover, when , the solution
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will approach exponentially; when ,
for .

In what follows, we assume that is continuously differ-
entiable so that is locally Lipschitz continuous. The fol-
lowing important result regarding solving VI with the projection
neural network is due to Xia et al. [27].

Lemma 4 [27, Th. 1]: If the Jacobian matrix of is sym-
metric on the bounded set , then the projection neural network
in (4) with the initial point is stable in the Lyapunov
sense and is globally convergent to the solution set of (1). In
particular, if (1) has a unique solution, the projection neural net-
work is globally asymptotically stable.

Theorem 1follows from Lemmas 3 and 4 directly.
Theorem 1: If the Jacobian matrix of is symmetric on

the bounded set , then the projection neural network in (4) with
any initial point is stable in the Lyapunov sense and
is globally convergent to the solution set of (1). In particular, if
(1) has a unique solution, the neural network is globally asymp-
totically stable.

Theorem 2 shows that the boundedness of in Theorem 1
can be replaced by the pseudomonotonicity of , and in this
case, the neural network can not only converge to the solution
set of (1), but also converge to an exact solution.

Theorem 2: If is pseudomonotone on and is
symmetric, then the projection neural network in (4) is stable
in the sense of Lyapunov and globally convergent to a solution
of (1). In particular, if (1) has a unique solution, the projection
neural network is globally asymptotically stable.

Proof: Suppose that is a finite solution of (1).
Since by Lemma 3 any trajectory will exponentially ap-
proach when , and will remain in forever, it
suffices to show the stability of the neural network model with

. Then, for and
, . By the pseudomonotonicity of , we have

Consider the following function on :

(9)

where . Since is symmetric,
[32]. It follows that is pseudoconvex on because
is pseudomonotone on [32]. Moreover, since is a solution
to VI , by Lemma 1, is a minimum of in . Then

Now consider the following Lyapunov function:

Clearly, , and , and its gradient is
given as . In Lemma 2, let

and , then we get

which follows:

and

It is to say

and if and only if . Thus, the neural
network is stable in the sense of Lyapunov.

Since , any level set of is bounded.
It follows that for any initial point , there exists a
convergent subsequence such that

where

Finally, define a Lyapunov function again

It is easy to see that decreases along the trajectory of (4)
and satisfies . Therefore, for any , there exists

such that, for all

Therefore, . It follows that the projection
neural network in (4) is globally convergent to a solution of (1).
In particular, if (1) has a unique solution, the projection neural
network is globally asymptotically stable.

Remark 1: It is observed from the proof of Theorem 2 that the
convergence rate of the neural network (4) will increase when
increases.

In the special case when is monotone, we have the fol-
lowing corollary which follows from Theorem 2 directly.

Corollary 1: If is monotone on and is sym-
metric, then the projection neural network in (4) is stable in the
sense of Lyapunov and globally convergent to the solution set
of (1). In particular, if (1) has a unique solution, the projection
neural network is globally asymptotically stable.

A similar result to corollary appears in [28, Th. 2.1]. How-
ever, corollary only requires the monotonicity of on , while
the counterpart in [28] requires the monotonicity of in ,
which excludes many applications. For example, in the one-di-
mensional (1-D) case, let and . Clearly,
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is monotone on , but not monotone on . One cannot assert
the global convergence and asymptotical stability of the neural
network (4) at by the result in [28]; but can do so by
Corollary 1.

Theorem 3: Suppose that is strongly pseudomonotone
on and is symmetric. If there exists a constant
such that

(10)

where and is defined by (9), then the projection
neural network in (4) is globally exponentially convergent to .

Proof: First, since is strongly pseudomonotone on ,
consists of only one solution . Similar to the argument stated
in the beginning of the proof of Theorem 2, it suffices to show
the exponential stability of the neural network with .
Then for and , .
By the strong pseudomonotonicity of , we have

Consider the Lyapunov function in the analysis of The-
orem 2. Then

In Theorem 2 we have obtained

It follows:

It is to say

where

It follows:

and

The projection neural network is globally exponentially
stable.

Note that for some problems condition (10) in Theorem 3 can
be satisfied. For example, let and where

. Then and . Clearly (10) holds.

However, in general, this condition is difficult to be satisfied. For
another example, let and . Then
and . There exists no such that (10) holds.
The Corollary 2 gives weaker conditions than those in Theorem
3, and consequently, concludes weaker results.

Corollary 2: Suppose that is strongly pseudomonotone
on and is symmetric. If has an upper bound
on , then the projection neural network is globally asymptoti-
cally stable at the unique solution of (1), and its convergence
behavior can be described by

(11)

where and are two positive constants.
Proof: As is strongly pseudomonotone, there is only

one solution to (1). From Theorem 2, the neural network is
globally asymptotically stable at . In the proof of Theorem 3
we have obtained

which implies

Since , set is bounded. Note that
may not be convex as may not be pseudoconvex. Since

, there exists a constant such that
for . Moreover, since defined by (9) is continuously
differentiable, there exists between and such that

As is convex, we have and by assump-
tion, where is a constant. It follows
and

Hence

where

It follows:

which yields (11), where and .
It is noticed that in proving Theorems 1, 2, and 3 and Corol-

lary 2, the symmetry of plays a critical role. This fact mo-
tivates us to solve a class of constrained optimization problems
considering that the Hessian matrix of any objective function
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is always symmetric if it is continuous. Consider the following
optimization problem:

subject to (12)

If is pseudoconvex and twice continuously differentiable,
from Lemma 1, (12) is equivalent to VI in (1) with .
Then the following projection neural network can be used to
solve (12):

(13)

The Corollary 3 follows from Theorems 2 and 3 and Corol-
lary 2.

Corollary 3: Assume that is pseudoconvex and twice
continuously differentiable on the closed convex set . Then
the projection neural network in (13) is stable in the sense of
Lyapunov and globally convergent to a solution of (12). More-
over, the following hold.

• If is strongly pseudomonotone on and there exists
such that , where is the

unique solution of (12), then the neural network in (13) is
globally exponentially stable.

• If is strongly pseudomonotone on and has
an upper bound on , then the projection neural network in
(13) is globally asymptotically stable at the unique solution
of (12), while the convergence rate is upper bounded by
(11).

Remark 2: One of the important classes of pseudoconvex op-
timization problems are the quadratic fractional problems in the
following form:

subject to (14)

where is an symmetric matrix, , , and ,
. It is well known (e.g., [35]) that is pseudoconvex

on when is positive–semidefinite. Conditions for being
pseudoconvex on when is not positive–semidefinite are
discussed in [36]. Specially, when , problem (14) is re-
duced to the classic quadratic programming problem, and when

it is reduced to the so called linear fractional problem,
which is, of course, pseudoconvex on [37].

C. Asymmetric Jacobian Matrix of

When the Jacobian matrix of is asymmetric, it is in gen-
eral difficult to formulate a function (e.g., in the proof of
Theorem 2) such that its gradient is . Moreover, when is as-
sumed to be only pseudomonotone but not monotone, many nice
properties of its Jacobian matrix such as the positive semidefi-
niteness and positive definiteness are lost. These are major dif-
ficulties in proving the stabilities of the projection neural net-
work. Nevertheless, under some stronger conditions, we find

that the neural network in (4) possesses globally exponential
convergence property, which is stated in Theorem 4.

Theorem 4: Assume that is Lipschitz continuous on
with constant and strongly pseudomonotone on with con-
stant . If , then the projection neural network in
(4) is globally exponentially stable.

Proof: Since is strongly pseudomonotone, there is
only one solution to VI . According to Lemma 3, it
suffices to show the exponential stability of the neural network
with . Let and in (1),
we have

The strong pseudomonotonicity of implies

(15)

By letting and in (8), we get

(16)
Multiplying to both sides of (15) and adding the resultant
inequality to (16) gives

which follows:

and

By noting that , we have

Consider the function
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Then

where

Therefore

The projection neural network in (4) is globally exponentially
stable.

IV. COMPONENTWISE PSEUDOMONOTONE

VARIATIONAL INEQUALITIES

Definition 4: A function is said to be com-
ponentwise pseudomonotone (CPM) on if, for every pair of
points and all

is said to be strictly CPM on if, for every pair of points
and all

and strongly CPM on if there exists a constant such
that for every pair of points and all

(17)

The above CPM definitions are easily seen as listed in an
order from weak to strong. Similarly, we can define the compo-
nentwise monotonicity (or CM), strictly CM and strongly CM of
the mapping , which again are listed in an order from weak to
strong. Moreover, CPM is a generalization of CM. Specifically,
CM implies CPM, strict CM implies strict CPM and strong CM
implies strong CPM; but not vice versa.

Remark 3: In general, the pseudomonotonicity does
not imply the CPM. For example, the mapping

is known to be pseudomonotone
on since is the
gradient of the function , which is pseu-
doconvex on according to Remark 2. Take
and . Then , but

. Therefore, is not CPM on
. The CPM does not imply the pseudomonotonicity either.

Consider the mapping . It is CPM on
, but not pseudomonotone

on by simple reasoning.
It will be shown that under different CPM conditions, the pro-

jection neural network in (4) also possesses desired global con-
vergence to the solution set of VI and global asymptotic

stability or global exponential stability. Without loss of gener-
ality, we hereafter assume in (4) for convenience. It is
readily found that all the convergence results presented here-
after hold when but . Two Lemmas should be
introduced first.

Lemma 5: If is a solution of VI , where is a
box set, then for all
and all .

Proof: Otherwise, without loss of generality, suppose there
exists one point such that ,

, and , , where
. Consider a vector with its components chosen as
, and , . Because is a box-type

set and both and are in , must be in . Then

which contradicts the fact that is a solution of VI .
Lemma 6: If is strictly CPM on a box set , then

VI has at most one solution.
Proof: Suppose VI has two distinct solution and

in . By Lemma 5, we have

Substituting into aforementioned resultant inequality
yields

which contradicts to the fact that is also a solution of VI.
Lemma 7: Assume , , where is a box

set. Then there exists a continuous function for
all and such that

1) the following system is equivalent to the neural network in
(4):

(18)

2) ;
3) if , then , where .

Proof: Write (4) in the scalar form

(19)

where .
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Case 1) If , , where
denotes any time period, (19) simplifies to

(20)

From the above system, it is seen that the th com-
ponent of the equilibrium point of system (20)
is attained within time period if and only if

.
Case 2) If , , where

denotes any time period, (19) becomes

(21)

since . Considering that
, we have . Then

there exists a continuous function
such that and the following system is
equivalent to (21) for :

(22)

Clearly, whenever , then ,
and the th component of the equilibrium point is
attained. Moreover, from (21). Conversely,
if the th component of the equilibrium point of
system (22) is attained within time period , we
must have since , .

Case 3) If , , where
denotes any time period, (19) becomes

(23)

since . Considering that
, we have . Then

there exists a continuous function
such that and the following system is
equivalent to (23) for :

(24)

Clearly, whenever , then ,
and the th component of the equilibrium point is
attained. Moreover, from (23). Conversely,
if the th component of the equilibrium point of
system (24) is attained within time period , we
must have since , .

In summary, (19) can be equivalently put in the form of (18)
with

Moreover, implies that is attained. Now consider
at some instant , , then could only be
the intersection of and . It follows from (20)–(22) that

Thus . Similarly, we can see that if at some instant
, , then could only be the intersection

of and and . Therefore, the aforementioned
function is continuous in .

Theorem 5: If is CPM on , where is a box set, then
the projection neural network in (4) is stable in the Lyapunov
sense and is globally convergent to a solution of (1). In par-
ticular, it is globally asymptotically stable if (1) has a unique
solution.

Proof: By Lemma 3, without loss of generality we assume
and thus for . Suppose is a finite

solution of (1), by Lemma 5 and the CPM of we have

for all and . Now consider the following
Lyapunov function:

By Lemma 7

and, hence

Clearly, is bounded. It follows from the LaSalle invariant
set theorem that the trajectory will converge to the largest
invariant subset of the following set:

On one hand, if , from (18), . On the other
hand, if , then either or

for all , since both of them are nonnegative for
all . Clearly, means either

or , which further implies .
According to Lemma 7, also implies .
Therefore, .

According to the Lyapunov theorem, there exists a convergent
subsequence such that

where
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Finally, define a Lyapunov function again

It is easy to see that decreases along the trajectory of (4)
and satisfies . Therefore, for any , there exists

such that, for all

and, thus, . Hence, the neural network (4)
is globally convergent to a solution of (1). In particular, if (1)
has a unique solution, the projection neural network is globally
asymptotically stable.

Theorem 6: If is strongly CPM on , where is a
box set, then the neural network in (4) is globally exponentially
stable.

Proof: Since is strongly CPM, according to Lemma
6, (1) has a unique solution . By Lemma 3, it suffices to
show the exponential stability of the neural network model with

. By Lemma 5 and the strong CPM of we have

for all and . Consider the function defined
in the proof of Theorem 5, and

where , and
. Then . Clearly, whenever ,

. According to Lemma 7, we have

and

where , as and
for . Note for , implies ,
hence both and are equal to zero at time . Then

It follows:

The projection neural network in (4) is globally exponentially
stable at .

Remark 4: Since VI contains many problems as special
cases, such as the fixed-point problem and the linear and
nonlinear complementarity problems, besides the constrained
optimization problems, these problems are also solvable by
using the neural network in (4) under the conditions discussed
in Sections III and IV. Take the nonlinear complementarity
problem (NCP) for example. Find a vector such that

(25)

where is a differentiable vector-valued mapping.
It is well known (e.g., see [2] and [4]) that VI with
taking the nonnegative orthant of (denoted by ) is equiv-
alent to the NCP defined in (25). Thus, the projection neural net-
work (4) can be applied to solve the NCP, and the corresponding
dynamic system becomes

(26)

where the activation function
and . Most of the conditions regarding the
stability of the neural network (4) discussed heretofore in the
paper apply to the projection neural network (26), and will not
be repeated here.

V. NUMERICAL EXAMPLES

In order to demonstrate the effectiveness and performance of
the projection neural network in solving pseudomonotone vari-
ational inequalities and pseudoconvex optimization problems,
we give several illustrative examples in this section.

Example 1: Consider a VI (1) with

and The problem
has only one solution . Obviously is
symmetric. It is easy to see that is not monotone on ;
however, it is not easy to verify that it is pseudomonotone on

. Actually, in general, it is a very difficult task to check the
pseudomonotonicity of a mapping in practice. We here employ
the Monte Carlo approach according to the definition of pseu-
domonotonicity: Generate a large number of pairs of points
and uniformly in satisfying and then
check if . For this problem, one million
pairs of such points have been tested and all satisfy (6). Thus,
it is reasonable to assert that is pseudomonotone on .
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Fig. 2. Transient behavior of the neural network in Example 1.

Fig. 3. Transient behavior of the neural network with initial point
x = (0; 4) in Example 2.

Thus, the conditions in both Theorems 1 and 2 are satisfied.
We then use the projection neural network in (4) to solve this
problem. All simulation results show that the projection neural
network is globally asymptotically stable at . For instance,
when , Fig. 2 shows that the trajectory of (4) with
the initial point converges to .

Example 2: Consider a two-dimensional (2-D) VI with a
spherical constraint. Let

and It is easy
to see that is asymmetric and is not monotone on

. By conducting a similar testing procedure to that descried

Fig. 4. Transient behavior of the neural network with six initial points in
Example 2.

in Example 1, we are confident that is strongly pseu-
domonotone on with constant , and Lipschitz con-
tinuous on with constant . We then use the projection
neural network in (4) to solve the aforementioned problem. Ac-
cording to Theorem 4, the neural network should be globally
exponentially stable. All simulations confirm this point and the
neural network always globally converges to the unique solu-
tion . For instance, when ,
Fig. 3 displays the trajectories of (4) with the initial point

. Fig. 4 displays the trajectories of (4) with six different
initial points , , , , ,
and , among which the last two points are located in

and the others are not. It can be seen that all trajectories con-
verge to exponentially.

Example 3 is about the componentwise pseudomonotone VI.
Example 3: Let us consider the VI with

and
It is seen that is not pseudomonotone (one may take

and
to verify this point). However, is strictly CPM. Therefore,
Theorem 5 applies here. We use the projection neural network
(4) to solve this problem. All simulations show that the neural
network is globally asymptotically stable at the unique op-
timum . For instance, when ,
Fig. 5 shows the transient behavior of the neural network with
the initial point .
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Fig. 5. Transient behavior of the neural network in Example 3.

Fig. 6. Transient behavior of the neural network in Example 4.

Example 4: We now use the projection neural network to
solve a pseudoconvex optimization problem. Consider the
quadratic fractional programming problem in (14) with

It is easily verified that is symmetric and positive–definite
in , and consequently is pseudoconvex on

. We minimize over
by using the neural network in

(4) with which can be written in the following
explicit form:

This problem has a unique solution in . All
simulations show the projection neural network in (4) is globally
asymptotically stable at . For instance, Fig. 6 shows that the
trajectory of the neural network with and the initial
point converges to .

A counter example in Section IV shows that the pseudomono-
tonicity of a mapping solely does not ensure the global conver-
gence of the projection neural network in (4) to the VI (1); the
next example, however, shows that the neural network may have
global convergence when the mapping is neither pseudomono-
tone nor componentwise pseudomonotone.

Example 5: Let us consider the NCP defined by (25) with

which has two solutions and
. This problem first appeared in [38]

and was tested by other researchers [12], [39]. Obviously,
is not monotone in and the Jacobian matrix of is

asymmetric. Furthermore, it is easily verified numerically that
is neither pseudomonotone nor componentwise pseu-

domonotone in , though it is often used to test numerical
algorithms that are designed for solving the pseudomonotone
VI (see [12] for example). We use the projection neural network
in (26) to solve this problem. All simulation results show that
the neural network is globally convergent to one of the optima

. For instance, Fig. 7(a) and (b) displays the trajectories
of (4) with two initial points and

, respectively. They both converge to
eventually. Notice that with the neural network first

converges to the other optimum and then converges to
[see Fig. 7(b)]. That is to say, is not a stable equilibrium
point of the neural network (26).

VI. CONCLUDING REMARKS

In this paper, we extended the scope of an existing projection
neural network, which was originally proposed for solving
monotone variational inequalities, to pseudomonotone varia-
tional inequalities and pseudoconvex optimization problems.
In the case of symmetric Jacobian matrix of the nonlinear
mapping, we proved that the projection neural network is
globally convergent, globally asymptotically stable, and global
exponentially stable, respectively, under pseudomononicity
and other conditions. In the case of asymmetric Jacobian
matrix of the mapping, we proved that the projection neural
network is globally exponentially stable under strong pseu-
domonotonicity and other conditions. Furthermore, by defining
several new pseudomonotonicities (i.e., various componentwise
pseudomonotonicties), we proved the global convergence and
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Fig. 7. Transient behavior of the neural network with two initial points in Example 5. (a) x = (10; 5; 10;�10) . (b) x = (2;�2;�1;5) .

global exponential stability of the projection neural network
under these conditions. Simulation studies demonstrated the ef-
fectiveness of the projection neural network and thus validated
the theoretical results. Moreover, the last illustrative example
suggests that the potential of the projection neural network
has been far less than fully explored, which calls for further
investigations in improving the stability conditions.
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