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Abstract—Generalized linear variational inequality (GLVI) is an
extension of the canonical linear variational inequality. In recent
years, a recurrent neural network (NN) called general projection
neural network (GPNN) was developed for solving GLVIs with
simple bound (often box-type or sphere-type) constraints. The aim
of this paper is twofold. First, some further stability results of the
GPNN are presented. Second, the GPNN is extended for solving
GLVIs with general linear equality and inequality constraints. A
new design methodology for the GPNN is then proposed. Further-
more, in view of different types of constraints, approaches for re-
ducing the number of neurons of the GPNN are discussed, which
results in two specific GPNNs. Moreover, some distinct properties
of the resulting GPNNs are also explored based on their particular
structures. Numerical simulation results are provided to validate
the results.

Index Terms—Generalized linear variational inequality (GLVI),
recurrent neural networks (NNs), global asymptotic stability,
global exponential stability, optimization.

I. INTRODUCTION

L INEAR variational inequality (LVI) is to find such
that

(1)

where , and is a closed convex
set. LVI and nonlinear variational inequality (NVI) (which is ob-
tained by replacing in (1) with a nonlinear vector-valued
function mapping from to ) have numerous ap-
plications such as economic equilibrium modeling, traffic net-
work equilibrium modeling, and structural analysis [1], [2]. Nu-
merous numerical algorithms have been proposed for solving
LVIs and NVIs (e.g., [3]–[6]).

During the past two decades, several recurrent neural net-
works (NNs) were developed for solving LVIs and NVIs, as well
as related optimization problems (e.g., see [7]–[12] and the ref-
erences therein). On one hand, these NNs serve as new compu-
tational models for solving these problems in real time. On the
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other hand, the dynamic systems governing the NNs may shed
lights to the development of new numerical algorithms.

Specifically, when is a box set, i.e.,
, the following projection NN model

was developed for solving LVIs and has been extensively
studied in the literature (e.g., [7], [8], [13], and [14])

(2)

where , and are positive constants,
and with

(3)

An extension of LVI (1) is as follows: Find such
that and

(4)

where ; and is a closed convex set
in . For convenience, this problem is termed the generalized
linear variational inequality (GLVI) hereafter. It has many sci-
entific and engineering applications as well, one of which refers
to the extended linear-quadratic programming, as discussed in
[15].

Based on the projection NN model (2), the following NN
model was developed for solving GLVIs when is a box set
[16], [17]:

(5)

However, in applications, is often a polyhedron defined by
a set of linear equalities and inequalities. Other than some
refined NN models for solving generally constrained LVIs
(e.g., see [10]), no NN has been proposed for solving generally
constrained GLVIs. In this paper, we present some new design
methods to develop NNs for solving such GLVIs. Toward this
goal, we focus on the following NN, which differs slightly from
(5) with an additional parameter :

(6)

where . According to Lemmas 2 and 3 in Section II, the
equilibrium points of (6) coincide with those of (5). However,
the additional parameter in (6) will play an important role
in establishing several further stability results of the NN (see
Section III). Though the previous NN arises initially for solving
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GLVIs with box-type constraints, it will be seen in Section IV
that its variants can solve GLVIs with general polyhedral con-
straints; so it is important to explore its properties fully, which
will be the main topic of Section III. For convenience, in what
follows, we call the NN in (6) the general projection neural net-
work or simply GPNN. In Section IV, we are not satisfied by
just designing a universal NN for solving GLVIs with any con-
straints. Actually, after such an NN is formulated, much of our
effort will be devoted to reduce the number of neurons in the
NNs for solving specific GLVIs subject to various constraints.
Section V provides several illustrative examples and a compara-
tive study with two iterative algorithms. Finally, Section VI con-
cludes the paper.

II. PRELIMINARIES

Throughout the paper, the following notations are used. The
transpose of a real matrix is denoted by . The symmetric
part of a square matrix is denoted by , which means

. A square matrix is said to be positive definite (pos-
itive semidefinite), denoted by , if

. Similarly, is said to be negative definite
(negative semidefinite), denoted by , if

. and denote the minimum and the
maximum eigenvalues of a real symmetric matrix , respec-
tively. denotes the norm of a vector .

denotes the norm of a square matrix
. denotes an identity matrix. stands for the solution set

of GLVI (4), which is assumed to be nonempty, and stands
for the equilibrium set of GPNN (6).

Definition 1: A real square matrix is said to be Lyapunov
diagonally stable (Lyapunov diagonally semistable), denoted by

, if there exists a diagonal matrix
such that .

Definition 2: A real square matrix is said to be additively
diagonally stable, denoted by , if for
any .

Many practical conditions can be found in [8], [14], and [18]
to test the Lyapunov diagonal stability of a matrix. If a matrix is

, then it is necessary to be [19].
In the following, let denote the class of globally Lipschitz

continuous and monotone nondecreasing functions, i.e., those
satisfying that there exists such that and

From (3), it is easy to verify the following fact.
Lemma 1: with .
Lemma 2 [20]: , where is the solution set of

the following:

Lemma 3: , where is the solution set of the
following:

Proof: The proof is straightforward by using Lemma 2,
thus omitted.

From Lemma 3, when is nonsingular, the equilibrium set
of GPNN (6) coincides with .

Lemma 4 [21, Th. 1.12]: Let be a Hermitian matrix parti-
tioned as

where denotes the conjugate transpose of . Then, the
following hold:

1) if and only if both and ;
2) if and only if both and ;

where is called the Schur com-
plement of in .

III. STABILITY RESULTS

In this section, we present some existing and new stability
results of GPNN (6) for solving GLVIs with box-type constraint
as described in (3).

The following lemma follows from [16], [17, Corollaries 3
and 4], and Lemma 3 directly.

Lemma 5:
1) Let in (6). If is symmetric and positive

definite, and , then GPNN (6) is stable in the
sense of Lyapunov and globally convergent to a solution
of (4). In particular, if the solution is unique, GPNN (6) is
globally asymptotically stable. Furthermore, if ,
then GPNN (6) is globally exponentially stable.

2) Let in (6). If , then
, and GPNN (6) is stable in the sense of Lyapunov and

globally convergent to an equilibrium point. In particular,
if the solution is unique, GPNN (6) is globally asymptoti-
cally stable. Furthermore, if , then GPNN (6) is
globally exponentially stable.

It is seen from Lemma 5 that GPNN (6) with
seems to have better theoretical properties than with
. However, the NN with has its own useful-

ness. On one side, results in fewer connections of the
NN in circuits implementation than . On the
other side, if we study the properties of GPNN (6) from other
viewpoints rather than relying on positive definiteness or posi-
tive semidefiniteness of as Lemma 5 does, many different
stability results can be obtained. First, one of the salient advan-
tages for is that it is the simplest condition that ensures

(see Lemma 3); so, in the following, our theoretical
analysis of GPNN (6) is stated by letting .

By assumption, . Let . By means of the
coordinate translation , GPNN (6) with can
be put into the equivalent form

(7)

where

, and denotes the th row of . Let
, where satisfies
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. According to Lemma 1, .
Then, (7) can be rewritten as

(8)

Based on (7) and (8), two equivalent forms of GPNN (6), the
following two theorems are derived.

Theorem 1: If there exists a matrix such that for any

and for at least one the strict previous inequality
holds, where , and is an
matrix with zero elements except for an element of one in its th
row and th column, then GPNN (6) with is globally
convergent to a solution of (4). In particular, if (4) has a unique
solution, GPNN (6) is globally asymptotically stable.

Proof: Define a Lyapunov function and
compute the time derivative of along the positive half
trajectory of (8). Similarly to the analysis of [14, Th. 3], we can
derive and the equality holds if and only if

, which shows that the system (8) is stable in the sense
of Lyapunov. Since , all level sets of are bounded. It
follows that for any initial point , there
exists a convergent subsequence such that

where and . Define a Lyapunov function
again

It is easy to see that decreases along the trajectory of (8)
and satisfies . Therefore, for any , there exists

such that, for all

where . Therefore, and
. It follows that GPNN (6) is globally con-

vergent to a solution of (4). In particular, if (4) has a unique
solution, GPNN (6) is globally asymptotically stable.

Theorem 2: GPNN (6) with is globally exponentially
stable at the unique solution of (4) if there exists a matrix
such that either of the following holds:

1) and
;

2) and
.

Proof:
1) First, in view of Lemma 1, we have ,

where . Consider the Lyapunov function
. As
, where .

Computing the time derivative of along the trajectory
of (7) yields

where

It follows

and

Then, GPNN (6) is globally exponentially stable at .
2) Consider the same Lyapunov function as defined

in part 1), and compute the time derivative of along
the positive half trajectory of (8)

where

In the previous reasoning, we use the fact
and . Similarly as in

part 1) we can conclude that GPNN (6) is globally exponentially
stable at .

If the positive–definite matrix in Theorem 2 is required
to be diagonal, the conditions and become

and , respectively. If, furthermore, is
assumed to be an identity matrix, we immediately have Corol-
lary 1.

Corollary 1: GPNN (6) with is globally exponen-
tially stable at the unique solution of (4) if any of the following
holds:

1) ;
2) ;
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3) ;
4) .

Proof: Parts 1) and 2) follow from Theorem 2 by setting
in the theorem. Parts 3) and 4) are special cases of parts

1) and 2), respectively. We only prove part 4) because part 3)
can be reasoned similarly. In view of ,
we have

for any satisfying , which follows:

and

This is equivalent to

Then

From part 2) of the corollary, part 4) follows.
It is observed that some conditions in Lemma 5 and Theorem

2 implicitly require the nonsingularity of . In fact, if this con-
dition holds, we can let in (6) and obtain some addi-
tional results about GPNN (6). Actually, in this case, by using a
variable transformation , we can rewrite GPNN (6)
equivalently as

(9)

The first observation on the previous system is that it shares a
similar structure with GPNN (6) in the following sense: The two
matrices and in GPNN (6) now become and ,
respectively. Corollary 2 then follows from part 1) or part 3) of
Corollary 1.

Corollary 2: Assume that is nonsingular and there exits
such that , then GPNN (6) with

and such a choice of is globally exponentially
stable at the unique solution of (4).

Remark 1: If , there always exists that ful-
fills the requirements in Corollary 2. In fact, one can choose

to ensure the global ex-
ponential convergence of the NN. However, in view of Lemma
5, if the network complexity is not a critical concern in hardware
implementation, it would be better to choose
since, in this case, there is no other restrictions on if only it is
positive; otherwise, we can choose in GPNN (6) with
an appropriate .

Remark 2: Similar to Corollary 2 which follows from part 1)
of Corollary 1, some other conditions from part 2) of Corollary

1 can be derived to ensure the global exponential stability of
GPNN (6). However, definitely those conditions will include

, which indicates that the corresponding results
have little meaning by considering Lemma 5 and Remark 1.

The second observation on system (9) is that it is a special
case of the system studied in [14], and thus most stability results
in [14] can be applied here to obtain specific results for (9). One
such elegant result is presented in Theorem 3.

Theorem 3: Assume that is nonsingular and
, then GPNN (6) with is globally exponentially

stable at the unique solution of (4).
Proof: In view of Lemma 1, in [14, Th. 6], by setting

, we obtain the desired result.
If furthermore is nonsingular, by using another vari-

able transformation , we can rewrite (9) as

(10)

Note that the previous system falls into a very general class of
NNs that has been extensively studied in the NN community in
the last two decades (e.g., see [8], [18], [19], [22], and many
references therein). Hence, these existing stability results can
be utilized to state the stability of GPNN (6). For example, The-
orem 4 reflects some new advancements in this regard.

Theorem 4: Assume that is nonsingular and there exits
such that is nonsingular. Consider GPNN (6)

with .
1) If , then the NN is globally conver-

gent to a solution of the GLVI. In particular, if (4) has only
one solution, then the NN is globally asymptotically stable.

2) If there exist positive numbers such that
, where

, then the NN is globally exponentially stable at
the unique solution of (4).
Proof: Part 1) follows from [19, Th. 2] and a similar anal-

ysis in proving Theorem 1; and part 2) follows from [22, Th. 1].

We emphasize that the stability results about the systems in
the form of (9) and (10) are actually abundant in the literature.
Only a few of them, which are general and easily testable, are
considered in Theorems 3 and 4. Interested readers are sug-
gested to consult the references mentioned previously to derive
more stability results for GPNN (6).

Finally, we give a remark on the effect of the scaling factor
of GPNN (6).

Remark 3: From the proofs of the stability results presented
in this section, it can be concluded that the larger in (6) is,
the faster the NN converges. The fact that an NN converges to a
point does not imply that the NN will absolutely reach that point.
But if the stability results are proved by using the Lyapunov
methods, it is usually safe to conclude that the convergence time
of GPNN (6) is finite if is large enough. Actually, except the
second part of Theorem 4 which is proved by employing the
comparison method [22], all the stability results about GPNN
(6) presented in this section are proved by using the Lyapunov
methods. Moreover, it is easily seen that the Lyapunov functions
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constructed in the proofs, denote by , always satisfy the
following:

1) and if and only if
, where ;

2) , where is a continuous
function satisfying and
if and only if .

Now, consider the case that the initial point is not an equi-
librium point of (6). Then, and .
Since is continuous, there exists such that

. By considering
, we have

Note that if and only if . Suppose
will never reach for , then the last term of the pre-
vious equation should be greater than zero, which implies

. On the contrary, if we take
will reach in finite time. Therefore, in order to accelerate

the convergence rate of GPNN (6), it would be a good strategy
to make the scaling factor as large as possible in model im-
plementation.

IV. GENERALLY CONSTRAINED GLVIS

In this section, we consider the GLVI with defined as

(11)

where , and being box
sets defined by and

with and being constant vectors.
Without loss of generality, any component of and can be

, and any component of and can be . For convenience,
in (11), are termed bound constraints, termed
inequality constraints, and termed equality constraints
hereafter. Though the bound and equality constraints can
be unified into inequality constraints (see Section IV-A), we
distinguish them because they can be handled with different
techniques which may lead to more efficient computational
schemes.

A. GLVIs With General Constraints

We first consider the general case of when all constraints
are present in (11). Define another box set

Then, (11) becomes

(12)

where . The following proposition establishes
a necessary and sufficient condition for a solution to the GLVI.

Proposition 1: is a solution of the GLVI with
defined by (11) if and only if there exists such that

, and

.
(13)

Proof: Observe that solves the following linear
programming problem:

s.t. (14)

where is a polyhedron defined by (12). By noticing that
is equivalent to

where is a new variable introduced to the previous
linear programming problem, we define the Lagrangian function
on for the problem

According to the saddle point theorem [23],
is a minimum of (14) if and only if and there exist

such that is a saddle
point of ; i.e.,

(15)

Define a function on , which
is clearly a linear function. The left inequality in (15) implies
that

which is equivalent to , i.e.,

Because , we have . Define another
function on , which is also a
linear function. The right inequality in (15) implies that

which is equivalent to the following variational inequalities
[24]:

i.e.,

.
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Substituting into previous equation and re-
placing with result in (13), which establishes the proposition.

Let

and , then (13) can be written in the following
compact form:

(16)

where . The conditions in Proposition 1 are
equivalent to finding satisfying
and (16). It is to say, the original GLVI with a general polyhe-
dral underlying set has been converted to another GLVI with
a box underlying set , which can be solved by using the fol-
lowing specific GPNN:

(17)

where and are two scalars, ,
and is defined similarly as in (3). The output of
the NN is simply , the first part of the state . For the
convenience of later discussion, let denote the
set of equilibrium points of (17).

As NN (17) is a special case of GPNN (6), all the stability
results of the GPNN presented in Section III can be applied
here. In fact, all results there with , and replaced
by , and can be used here to state the properties of
(17). Clearly, if we do so, it is, in general, inevitable that these
stability results will involve requirements on the constraint pa-
rameters such as and in (11) besides and . But
there is at least one exception. See Theorem 5.

Theorem 5: Consider GPNN (17) with for
solving the GLVI with defined in (11). The following hold.

1) If , then , and the state trajectory
of the NN is stable in the sense of Lyapunov and globally
convergent to an equilibrium point in .

2) If, furthermore, , then the output trajectory
of the NN is globally asymptotically stable at the unique
solution of the problem.
Proof: Part 1) is directly from Proposition 1 and Lemma 5

by noting that

because by assumption. We are now concerned with
part 2). To prove the global asymptotical stability of the output
trajectory , according to Lemma 5 it is only needed to show
that the solution of (4) is unique if . Suppose that

has two distinct points and . Then, correspondingly,

(16) has two distinct solutions and
according to Proposition 1. Therefore

Substituting for in the first inequality above, and
for in the second inequality yields

Adding these two inequalities yields

Thus

which contradicts the fact that . Hence, there is only
one solution to problem (4).

In the rest of the this section, we consider two special cases
of GLVIs in terms of . As special cases, needless to say, they
can be of course solved by using GPNN (17) under appropriate
conditions. However, we are concerned with reducing the net-
work complexity based on particular structures of .

B. GLVIs With Inequality Constraints Only

We first consider in (11) with inequality constraints only;
i.e.,

(18)

where the notations are the same as in (11). According to the
arguments in IV-A, a GPNN with its state equation given by

can solve the GLVI with defined by (18), where

, and . The
NN has clearly neurons. In the following, we develop a
GPNN with neurons to solve this problem under an additional
condition saying that is nonsingular.

From Proposition 1, by replacing with with , and
with , we have

As is nonsingular, the previous equality implies
. Substituting this into the pre-

vious inequality gives

(19)
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where

Then, the original GLVI is converted into another GLVI with
box set . The following specific GPNN is proposed to solve
the problem:

• state equation

(20a)

• output equation

(20b)

where , and .
All results in Section III can be applied to study the behavior

of GPNN (20a) and (20b), by replacing with
. In the following, we present some results for

GPNN (20a) and (20b) that impose no, or simple, restrictions
on the constraint parameter .

Theorem 6: Consider GPNN (20a) and (20b) with
for solving the GLVI with defined in (18). Sup-

pose that is nonsingular. The following are true.
1) If , then

, where denotes the set of equilibrium
points of (20a), and the state trajectory of the NN is stable
in the sense of Lyapunov and globally convergent to an
equilibrium point.

2) If , then the output trajectory of the NN is
globally asymptotically stable at the unique solution of
the GLVI.

3) If and , then the state trajectory
of the NN is globally exponentially stable.
Proof: If , then and

. Furthermore, if and
, then . Consequently, parts 1) and 3) of

the theorem follow from Proposition 1 and Lemma 5. From
parts 1) and 3), the output trajectory of the NN is stable in the
Lyapunov sense and globally convergent to the a solution of (4).
From Theorem 5, implies that the solution of (4) is
unique. Hence, the output trajectory is globally asymptotically
stable.

C. GLVIs With Inequality and Equality Constraints

We next consider the GLVI with defined in (11) without
any bound constraint, i.e.,

(21)

where the notations are the same as in (11). In this section,
we assume that (otherwise, several equalities in

can be removed by some simple technique). To ensure
the existence of feasible solutions to the problem, it is necessary
that . From Section IV-A, GPNN (17) with replaced
by can solve the GLVI, which has neurons. From
Section IV-B, by treating as inequality constraints, a
GPNN with neurons may also solve the problem under

appropriate conditions. In what follows we show that a GPNN
with neurons may also solve the problem. Let us first present
an optimality condition for the GLVI with defined in (21).

Proposition 2: is a solution of the GLVI with
defined by (21) if and only if there exist and
such that and

(22)

Proof: The proof is similar to that of Proposition 1, and
thus omitted.

Suppose that is nonsingular. From the first equation in
(22), we have

Substituting it into the second equation in (22) gives

Assume that , then is positive definite
because ; and so is its inverse. It follows that

Substituting into the expression of obtained previously
gives

where

Substituting into the inequality in (22) results in

(23)

where

Based on this equivalent formulation, the following specific
GPNN is proposed for solving the GLVI concerned in this
section:

• state equation

(24a)

• output equation

(24b)

where , and .
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Lemma 6: Let
. Then, the matrix

Moreover, and, consequently, has at least
zero eigenvalues. In particular, when .

Proof: Define a matrix

which is symmetric. The Schur complement of in
(see Lemma 4), denoted as , is just . Since

, we have . Moreover, by noticing
that

we have , which indicates that

By Lemma 4, we conclude that . In addition, it is obvious
that . If , then because

. Suppose that . Denote the th row of with
, and the th column of with .

Then, is a subspace of . The di-
mensionality of its orthogonal complement, denoted by , is

. Clearly, . Therefore, among
these ’s, at most are linearly independent. Then,

. Because , it can be de-
composed as , where is an orthogonal matrix and

with being the eigenvalues of .
Then, . It follows that at least

eigenvalues of are equal to zero. In particular, if
.

Lemma 6 indicates that in (23) is positive semidefinite.
Then, the following results follow from Lemma 5.

Theorem 7: Consider GPNN (24a) and (24b) with
for solving the GLVI with defined in (21). If

is nonsingular and is symmetric and
positive definite, then the following hold.

1) , where denotes
the set of equilibrium points of (24a).

2) The state trajectory of the NN is stable in the sense of Lya-
punov and globally convergent to an equilibrium point.

Remark 4: Note that the conditions and
in Theorem 7 ensure and (see Lemma

6). In view of Lemma 5, Theorem 7 still holds if is posi-
tive semidefinite but asymmetric. The reason for imposing the
symmetric condition on and, hence, on is that, at cur-
rent stage, we find no rigorous evidence showing that
when is asymmetric and positive definite, though numer-
ical experiments agree with this expectation (refer to Example
3 in Section V). This could be an open problem.

Remark 5: If we could assume and
in (24a) and (24b), then because . Con-
sequently, we could conclude the global exponential stability
of GPNN (24a) and (24b) from Lemma 5. However, Lemma 6
smashes this conjecture, which says whenever the equality con-
straints are present, cannot be positive definite but
positive semidefinite only.

A comparison of the three GPNN models in (17), (20a),
(20b), (24a), and (24b) shows that, to guarantee the same
convergence properties, the required conditions are in an order
from weak to strong (see Theorems 5–7), though their structures
are getting simpler and simpler. For example, GPNN (20a) and
(20b) requires to be nonsingular while GPNN (17) does not.
For another example, to ensure the global convergence, both
GPNNs in (17) and (20) require the positive semidefiniteness of

only, while GPNN (24a) and (24b) requires the positive
definiteness of this matrix. It should be regarded as weakness
of the latter two NNs. Nevertheless, according to Remark 4,
some additional conditions required by GPNN (24a) and (24b)
might not be necessary. Moreover, this comparison is based on
Theorems 5–7 which are derived from Lemma 5. If the three
GPNNs are compared based on other stability results presented
in Section III, no obvious weakness or strength of any GPNN
can be observed in general (see Example 4 in Section V).

V. NUMERICAL EXAMPLES

Example 1: First, consider a GLVI with bound constraints
only. Let the parameters in (4) be defined as

and . Since
and is not symmetric for any ,

according to Lemma 5, GPNN (6) with can
solve the problem, but it is not sure whether GPNN (6) with

can do it. Let and ; then, it
can be verified that and

According to Theorem 2, GPNN (6) with and
can also solve the problem. Simulation results show that
GPNN (6) converges to the unique solution of the problem

from any initial point in .
For example, Fig. 1(a) demonstrates the transient behavior of
such a GPNN (6) with from a random initial point, and
Fig. 1(b) shows the evolution of the error . It is seen
that the convergence rate of the trajectories is exponential.

Example 2: Consider a GLVI with
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Fig. 1. Convergence behavior of GPNN (6) with � = 1;W = I , and � = 2 from a random initial point in Example 1. (a) State trajectory. (b) Error.

Fig. 2. State trajectories of GPNN (6) with � = 1;W = N , and � = 1
from ten random initial points in Example 2.

and as the same as in Example 1. Since is not positive
semidefinite, if is used in GPNN (6), one
cannot ascertain the global convergence of the NN according
to Lemma 5. However, by noticing that since

where , we can let
in GPNN (6) and ensure the global exponential stability of the
resulting NN according to Theorem 3. Fig. 2 shows the trajec-
tories of such a GPNN (6) with from ten random
initial points. It can be seen that all trajectories converge to the
unique solution of the GLVI .

Example 3: Consider a GLVI with a general polyhedron de-
fined in (11). Let

Fig. 3. State trajectories of GPNN (17) with � = 1;W = ( ~N + � ~M) , and
� = 1 from ten initial points in Example 3 where bound constraints are present.

We first consider the case when all constraints in (11) are
present, where

and
. It can be verified that . GPNN (17) with

can be used to solve the problem according to
Theorem 5. Simulation results show that from any initial point
this NN globally converges to the unique equilibrium point

. That is,
the unique solution of the GLVI is . Fig. 3
displays the transient behavior of the NN with and
ten different initial points.

Next, we let in (11) and solve the GLVI without
bound constraints by using GPNN (17) with .
The solution obtained is . Since
the bound constraints in is removed, GPNN (24a) and (24b)
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Fig. 4. State trajectories of GPNN (24a) and (24b) with � = 1;W = ( �N +
�I) , and � = 1 from ten initial points in Example 3 where bound constraints
are absent.

may also solve the problem. Fig. 4 shows the state trajecto-
ries of GPNN (24a) and (24b) with and

from ten random initial points in . It is seen
that, though is asymmetric, all trajectories converge to

, which corresponds to the solution of
the GLVI . This phenomenon
echoes Remark 4.

Example 4: Let us solve a GLVI in (4) with inequality con-
straints only, which is determined by

and is defined in (18) with

and . For solving the
problem, there are two possible choices of GPNNs, i.e., (17)
and (20a)–(20b). If the former is used, Theorem 5 cannot be
applied since is neither positive definite nor positive
semidefinite. Moreover, in this case, many stability results for
(17) tailored from those for (6) discussed in Section III (e.g.,
Lemma 5, Theorems 3 and 4) by replacing , and so
on with , and so on, cannot be applied either, since
it is easily seen that

is singular and

is not positive (semi-)definite. However, if the latter is used,
simple calculations yield

Fig. 5. State trajectories of GPNN (20a) and (20b) with � = 1;W = N̂ ,
and � = 1 from 20 initial points in Example 4.

which is nonsingular, and

when . Note that there exist and
such that and .
According to Theorem 4, GPNN (20a) and (20b) with

is globally exponentially stable at the unique solution of
the previous GLVI. Simulation results verify this fact. Fig. 5
illustrates the state trajectories of GPNN (20a) and (20b) with

from 20 random initial points, from which it is seen
that all trajectories converge to a unique point . By using the
output (20b), the solution of the GLVI is calculated as

.
Example 5: In this example, we would like to show the nu-

merical performance of the NNs based on numerical solvers of
ordinary differential equations (ODE), because, in general, the
dynamic behavior of recurrent NNs can be simulated via ODE
solvers, as seen in the preceding examples. We do this by com-
paring the performance of an ODE solver for NN simulation
with two iterative numerical algorithms. However, most existing
iterative numerical algorithms are for solving LVIs and NVIs
and there are few for solving GLVI (4), especially with a gen-
eral polyhedral set defined in (11); so, we will consider to
solve LVIs (1) (i.e., GLVIs (4) with and ). For
simplicity, let the constrained set be defined in (11) with
and . For solving such type of LVIs, [4] provides an in-
teresting equivalent constrained optimization formulation

s.t. (25)

where , and are positive constants. From [4],
solves (1) if and only if there exist ,
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TABLE I
NUMERICAL COMPARISON RESULTS

and such that is a global
minimizer of (25) and . Moreover, if ,
and constitute a constrained stationary point
of (25), then is a solution of LVI (1). Hence, one can solve
this LVI by solving (25). Here, we adopt two numerical algo-
rithms, SPG1 and SPG2, in [25] for solving (25).

The test problems are generated as follows. First, two
matrices and with random entries between 3 and 3 are
generated. Let and . Then, define

an upper triangular matrix such that
and

. Finally, let . This procedure is taken from
[3], which ensures but not necessarily symmetric. The
other parameters in (1) and (11) are generated as follows. All
entries of are random numbers in , all entries of
and are random numbers in , and all entries of
are random numbers in .

. Three sets of problems are generated with dif-
ferent combinations of and , and in each set five prob-
lems are generated (see Table I).

The NN (17) is simulated to solve the problems based on the
ODE solver “ode45” in MATLAB 7.0. For convenience, here-
after, the NN with is called GPNN1 and the
NN with is called GPNN2. In all simulations, both and

are set to 1. The initial points are always randomly generated
in . The following stopping criteria are adopted:

•
;

• CPU time is equal to or greater than 600 s for the first two
sets of problems, 1200 s for the third set of problems, and
1800 s for the fourth set of problems.

Note that if and
only if an exact solution is achieved. Thus, the first aforemen-
tioned stopping criterion measures the normalized error of every
dimension of the state variable . In (25), set

as suggested in [4]. The two algorithms SPG1 and SPG2

are coded in MATLAB 7.0, and the algorithmic parameters are
adopted as recommended in [25]. The initial points for the al-
gorithms are also randomly generated in . The
following stopping criteria are adopted:

• , where
,

and denotes the gradient of ;
• CPU time is equal to or greater than 600 s for the first two

sets of problems, 1200 s for the third set of problems, and
1800 s for the fourth set of problems.

Note that if and only if an
exact solution is achieved. Thus, the first aforementioned stop-
ping criterion measures the normalized error of every dimension
of the variable . These criteria make the comparison fair to
some extend. Table I lists detailed results of the four algorithms.
In the table, for GPNN1 and GPNN2, “Error” refers to

and for SPG1 and
SPG2, “Error” refers to .
“CPU Time” refers to the execution time (in seconds) on a PC
with an Intel Pentium IV 3.2-GHz CPU and a 1024-MB phys-
ical memory.

From Table I, it is seen that GPNN1 outperforms SPG1 and
SPG2 in terms of convergence time for solving small-sized
problems; i.e., the first and second set of problems. For solving
the third and fourth set of problems, GPNN1 is at least compet-
itive to SPG1 and SPG2. Another observation from the table
is that, though not theoretically founded, GPNN2 converges to
the solution of every test problem also. This is not a strange
phenomenon by recalling that we have provided some sufficient
conditions on the convergence of GPNN2 in Section III, and
many other sufficient conditions may exist but have not been
revealed yet. However, the speed is lower than GPNN1 for
most problems with several exceptions. It is interesting to note
that for solving the last problem in the second set and the fourth
problem in the fourth set, the convergence time of GPNN2 are
surprisingly short.
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VI. CONCLUDING REMARKS

In this paper, we present some new results on the GPNN for
solving GLVIs. In view that the NN is limited to handle the
box- or sphere-type constrained GLVIs, we develop a new de-
sign methodology for the GPNN to solve GLVIs with general
polyhedral constraints. By utilizing optimization techniques, the
problems are transformed into new GLVIs with box-type con-
straints, which then can be solved by using specifically designed
GPNNs. In addition, much effort has been devoted to minimize
the number of neurons of the designed GPNNs for GLVIs with
specific types of constraints in order to reduce the network com-
plexity. Though all of the stability results of GPNN are appli-
cable to the specific GPNNs, we further present some new re-
sults based on their particular structures. Finally, several numer-
ical examples are presented to illustrate the performances of the
GPNNs. It is interesting to note that in terms of numerical simu-
lation, the NN is competitive to two iterative algorithms, which
reveals the great potential of this method.
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