
1414 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007

Design of General Projection Neural Networks for Solving
Monotone Linear Variational Inequalities and Linear and

Quadratic Optimization Problems

Xiaolin Hu and Jun Wang

Abstract—Most existing neural networks for solving linear variational
inequalities (LVIs) with the mapping Mx + p require positive definite-
ness (or positive semidefiniteness) of M. In this correspondence, it is
revealed that this condition is sufficient but not necessary for an LVI being
strictly monotone (or monotone) on its constrained set where equality
constraints are present. Then, it is proposed to reformulate monotone LVIs
with equality constraints into LVIs with inequality constraints only, which
are then possible to be solved by using some existing neural networks.
General projection neural networks are designed in this correspondence
for solving the transformed LVIs. Compared with existing neural net-
works, the designed neural networks feature lower model complexity.
Moreover, the neural networks are guaranteed to be globally convergent
to solutions of the LVI under the condition that the linear mapping
Mx + p is monotone on the constrained set. Because quadratic and linear
programming problems are special cases of LVI in terms of solutions, the
designed neural networks can solve them efficiently as well. In addition, it
is discovered that the designed neural network in a specific case turns out to
be the primal-dual network for solving quadratic or linear programming
problems. The effectiveness of the neural networks is illustrated by several
numerical examples.

Index Terms—Global convergence, linear programming, linear vari-
ational inequality (LVI), quadratic programming, recurrent neural
network.

I. INTRODUCTION

In this correspondence, we are concerned with solving the following
linear variational inequality (LVI): find x∗ ∈ Ω such that

(Mx∗ + p)T (x− x∗) ≥ 0 ∀x ∈ Ω (1)

whereM ∈ �n×n, and p ∈ �n, and

Ω = {x ∈ �n|Ax ∈ Y, Bx = c, x ∈ X} (2)

with A ∈ �m×n, B ∈ �r×n, and c ∈ �r . X and Y are two box
sets defined as X = {x ∈ �n|x ≤ x ≤ x}, Y = {y ∈ �m|y ≤ y ≤
y}, where x, x ∈ �n, and y, y ∈ �m. Note that any component of x, y
may be set to −∞ and any component of x, ymay be set to ∞. Without
loss of generality, we assume that y < y, since if y

i
= yi for some i,

then the corresponding inequality constraints can be incorporated into
Bx = c.

The above LVI is closely related to the following quadratic program-
ming problem:

minimize
1

2
xTMx+ pTx

subject to x ∈ Ω (3)

Manuscript received November 25, 2006; revised April 11, 2007. This work
was supported by the Research Grants Council of the Hong Kong Special
Administrative Region, China, under Project CUHK4165/03E. This paper was
recommended by Associate Editor M. Qiao.

The authors are with the Department of Mechanical and Automation
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
jwang@acae.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2007.903706

where the parameters are the same as in (1). It is well known that
(e.g., [1] and [2]) if M is symmetric and positive semidefinite, the
two problems are actually equivalent. If M = 0, the above problem
degenerates to a linear programming problem.

The optimization problem (3) has a wide variety of scientific and
engineering applications, e.g., regression analysis, image and signal
processing, parameter estimation, robot control, to list a few. This
fact partly addresses the significance of the study of LVI (1). In
addition, LVI has many applications other than optimization, including
analysis of piecewise-linear resistive circuits, bimatrix equilibrium
points problem, economic equilibrium modeling, traffic network equi-
librium modeling and structural analysis, and so on; see [1] and [2]
for a comprehensive view of LVI and nonlinear variational inequality
(NVI). In past years, numerous numerical methods have been proposed
for solving LVIs and NVIs, e.g., see [1]–[3] and references therein.
Another branch of methods refers to recurrent neural networks, which
are of particular interest in real-time applications and parallel com-
putation [4], [5]. For example, in [6], a neural network approach for
solving LVI with bound (box or sphere) constraints was proposed. In
[7], another neural network model was devised for solving LVI with
bound constraints. In [8]–[11] and [25], a projection neural network
for solving NVI and related optimization problems with bound con-
straints was developed. More recently, two neural networks capable
of solving monotone NVI with general constraints were invented in
[13]–[15]. Because optimization problems are special cases of varia-
tional inequalities, the aforementioned neural networks can be used to
solve some optimization problems as well (usually convex problems).
In addition, many neural networks were developed for optimization
(e.g., [4], [5], [16]–[23], and references therein), and some of them
will be discussed briefly in Section III-C for solving (3).

In the design of recurrent neural networks for solving variational in-
equalities and related optimization problems, a critical issue is stability
conditions. In this correspondence, an LVI (1) is called a monotone
(strictly monotone) LVI if the mapping Mx+ p is monotone (strictly
monotone) on the constrained set Ω, and one of our primary purposes
is to solve such monotone LVIs. Most of the existing neural networks
mentioned above that are capable of solving (1) or (3), e.g., those in
[13], [19], [20], and [22], require that Mx+ p is monotone (strictly
monotone) on �n, or equivalently,M is positive semidefinite (positive
definite). Because of the presence of equality constraints in the con-
strained set Ω in (2), the positive semidefiniteness (or positive definite-
ness) ofM is not a necessary condition for ensuring the monotonicity
(or strictly monotonicity) ofMx+ p on Ω, as will be made clearly in
Section II. A natural question arises, i.e., can these existing neural net-
works be applied directly to solve an LVI (1) that is (strictly) monotone
on Ω instead of on �n? Unfortunately, the answer is no, as shown
by two examples in Sections III and III-D. This fact motivates us to
reformulate the problem in order to apply existing neural net-
work models or design new models for solving it. Another critical
issue in designing recurrent neural networks for engineering applica-
tions is model complexity. We aim at designing neural networks of
lower complexity than existing ones for solving monotone LVIs.

The rest of this correspondence is organized as follows. In
Section II, some preliminaries are introduced. The relationship be-
tween the monotonicity of a linear mapping Mx+ p and the positive
semidefiniteness ofM is revealed. In Section III, a general projection
neural network (GPNN) [24] is designed to solve LVI (1) with hybrid
linear constraints. Some special cases of (1) and the corresponding
GPNNs are also discussed in this section. In Section IV, two nu-
merical examples are presented. Finally, Section V concludes this
correspondence.

1083-4419/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007 1415

II. PROBLEM FORMULATION

For the convenience of discussion, it is necessary to introduce some
notations and definitions first. Throughout this correspondence, the
following notations are used. The two capitals I and O stand for the
identity matrix and zero matrix, respectively, and their dimensions
can be determined from the context. For simplicity, a square matrix
M ≥ 0 means that it is positive semidefinite, and M > 0 means that
it is positive definite. Denote Ω∗ as the solution set of (1). Throughout
this correspondence, it is assumed that Ω∗
= ∅. Moreover, we assume
Rank(B) = r in (2), which is always true for a well-posed problem.
Definition 1: A mapping F : �n → �n is said to be monotone on

a set K if ∀x, y ∈ K

(F (x) − F (y))T (x− y) ≥ 0.

F is said to be strictly monotone on K if the strict inequality above
holds whenever x
= y, and strongly monotone on K if there exists a
constant γ > 0 such that ∀x, y ∈ K

(F (x) − F (y))T (y − x) ≥ γ‖x− y‖2.

For a linear mapping, strict monotonicity is identical with strong
monotonicity. To solve the LVI defined in (1), most of the existing
neural networks such as in [13], [19], [20], and [22] require thatM ≥
0 or M > 0. According to Definition 1 and the results in [2, pp. 155–
156], the two conditions are necessary and sufficient for ensuring that
the mapping F (x) =Mx+ p is monotone and strictly monotone on
Ω, respectively, if Ω does not include the equality constraints Bx = c.
However, if the equality constraints are present in Ω, the latter condi-
tion is weaker than the former, but a necessary and sufficient condition
similar to the former can be found for the latter [see statement 3)
in Lemma 1]. Before this lemma is presented, some notations need
to be introduced. Since Rank(B) = r, without loss of generality, B
can be partitioned as [BI , BII], where BI ∈ �r×r, BII ∈ �r×(n−r),
and det(BI)
= 0. Then, Bx = c can be decomposed into

(BI , BII)

(
xI

xII

)
= c

where xI ∈ �r , and xII ∈ �n−r , which yields xI =
−B−1

I BIIxII +B−1
I c, and

x = QxII + q (4)

where

Q =

(−B−1
I BII

I

)
∈ �n×(n−r) q =

(
B−1

I c

O

)
∈ �n. (5)

Lemma 1: The following statements are equivalent.

1) The mappingMx+ p in (1) is monotone (strictly monotone) on
Ω defined in (2).

2) QTMQ ≥ (>)0, where Q is defined in (5).
3) M is positive semidefinite (positive definite) on the cone

C = {η ∈ �n|Bη=0, η
=0}, i.e., ηTMη≥ (>)0 ∀η ∈C.

Proof: We only prove the first part of each statement while the
other part can be reasoned similarly.

(i)⇔(ii): By Definition 1, the monotonicity of Mx+ p on Ω is
equivalent to

(Mx−My)T (x− y) ≥ 0 ∀x, y ∈ Ω.

As both x, y satisfyBx = c, they can be expressed in terms of xII and
yII in the form of (4). Then, the above inequality is equivalent to

(xII − yII)
TQTMQ(xII − yII) ≥ 0 ∀xII , yII ∈ Ω̄

where

Ω̄ =
{
xII ∈ �n−r|A(QxII + q) ∈ Y, QxII + q ∈ X

}
(6)

which is further equivalent toQTMQ ≥ 0 by considering that there is
no equality constraint inside Ω̄.

(ii)⇔(iii): The cone C in statement 3) can be equivalently written
as C = {Qξ|ξ ∈ �n−r, ξ
= 0}, where Q is defined in (5). Then,
ηTMη ≥ 0 for any η ∈ C is identical with ξTQTMQξ ≥ 0 for any
ξ ∈ �n−r and ξ
= 0, namely QTMQ ≥ 0. �

Regarding statement 3) in Lemma 1, one thing needs to be clarified.
Throughout this correspondence, when we say a matrix M is positive
(semi) definite without specifying any set K, it means K = �n. In
addition, regarding this statement, we have the following result.
Theorem 1: M is positive definite on the cone C defined in Lemma 1

if and only if there exists ρ̄ > 0 such that for ρ ≥ ρ̄,M + ρBTB > 0.
Proof: If M + ρBTB > 0, then xTMx+ ρxTBTBx > 0

∀x ∈ �n. It follows that xTMx > 0 for all x ∈ �n, Bx = 0. This
proves the “ if” part. The “only if” part can be reasoned in
the same manner as analyzing the lemma in [2, Lemma 1.25,
p. 68] by considering that BTB ≥ 0. �

This theorem can inspire an approach for solving LVI (1) with strict
monotonicity of Mx+ p on Ω in view of the equivalence between
(1) and

(
(M + ρBTB)x∗ + p− ρBT c

)T
(x− x∗) ≥ 0 ∀x ∈ Ω (7)

where Ω is defined in (2). Then, many neural networks in the literature
can be applied to solve this problem. One limitation of this new
formulation is the difficulty in choosing an appropriate ρ—in doing so,
one has to choose by trial-and-error which is often time consuming.
Another limitation lies in that the formulation takes effect only for
strictly monotone LVIs on Ω. In the following, we derive another
equivalent LVI to (1) via variable substitution.

A simple technique in solving mathematical problems with equal-
ities is to express some unknowns in terms of the others and then
substitute them into the problem, which will often reduce the size
of the original problem. Such a technique can be adopted as well in
solving LVIs. Based on Bx = c, we have obtained x = QxII + q
in (4). Since x∗ in (1) should satisfy Bx = c too, we have x∗ =
Qx∗II + q. Substitution of x and x∗ into (1) gives

(MQx∗II +Mq+p)T Q (xII−x∗II)≥0 ∀QxII +q ∈ Ω′

where Ω′ is the set Ω in (2) with Bx = c deleted, or

(
QTMQx∗II +QTMq+QT p

)T
(xII−x∗II)≥0 ∀xII ∈Ω̄

1416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007

where Ω̄ is defined in (6). Now, the original LVI is equivalently
converted into another LVI. Let

u =xII M̄ = QTMQ p̄ = QTMq +QT p

Ā =

(
AQ

−B−1
I BII

)

V =

{
v ∈ �m+r

∣∣∣∣
(
y −Aq
xI −B−1

I c

)
≤ v ≤

(
y −Aq
xI −B−1

I c

)}

U = {u ∈ �n−r|xII ≤ u ≤ xII}

where xI = (x1, . . . , xr)
T , xII = (xr+1, . . . , xn)T , xI = (x1,

. . . , xr)
T , and xII = (xr+1, . . . , xn)T . Then the new LVI can be

rewritten in the following compact form:

(M̄u∗ + p̄)T (u− u∗) ≥ 0 ∀u ∈ Ω̄ (8)

where

Ω̄ = {u ∈ �n−r|Āu ∈ V, u ∈ U}.

Compared with the original LVI in (1) and the LVI in (7),
the new formulation (8) has fewer variables while the equality
constraints are absorbed. Again, existing neural networks may
be applied to solve this new problem under the condition that
M̄ is positive definite or positive semidefinite, i.e., Mx+ p is
strictly monotone or monotone on Ω according to Lemma 1.
However, those neural networks will have more neurons or states than
what we will design in Section III-A, and this point will be made
clearly in Section III-C.

III. MAIN RESULTS

In [24], the GPNN was presented for solving general variational
inequalities with the box constraints X defined in (2), i.e.,

dx

dt
= λD {−G(x) + PX (G(x) − F (x))}

where F,G : �n → �n, D ∈ �n×n, and λ > 0 is a scalar; and
PX : �n → X is a projection operator defined as (PX (x1),
. . . , PX (xn))T with

PX (xi) =

{
xi, xi < xi

xi, xi � xi � xi

xi, xi > xi.
(9)

This operator is called the “activation function.” In [25], a linear case
of this neural network (i.e., both F and G are linear mappings) is
further studied. In this section, we will design a linear case of the
neural network with low complexity and high performance for solving
LVI (8) and consequently the original LVI (1). To attain this goal,
some techniques in optimization and stability analysis will be focused.

A. Model Design

First of all, a necessary and sufficient condition characterizing the
solutions of LVI (8) is provided below, which will play a critical role
in the design of the GPNN.

Theorem 2: u∗ ∈ �n−r is a solution of (8) if and only if there exists
v∗ ∈ �m+r such thatw∗ = ((u∗)T , (v∗)T)T satisfies Ñw∗ ∈ W and

(M̃w∗ + p̃)T (w − Ñw∗) ≥ 0 ∀w ∈ W (10)

where

M̃ =

(
M̄ −ĀT

O I

)
Ñ =

(
I O
Ā O

)

p̃ =

(
p̄
O

)
W = U × V.

Proof: Define a function φ(u) = (M̄u∗ + p̄)T (u− u∗) from
�n−r into itself, where u∗ is a solution of LVI (8). Then, u∗ solves
the following optimization problem:

minimize φ(u)

subject to Āu ∈ V, u ∈ U (11)

which is a linear programming problem. Define a Lagrangian function
associated with (11) as

L(u, v, η) = φ(u) − vT (Āu− η)

where v ∈ �m+r is the Lagrangian multiplier, and η ∈ U . According
to the well-known saddle point theorem [27], u∗ is an optimal solu-
tion of (11) if and only if there exists v∗ ∈ �m+r and η∗ ∈ �m+r

such that

L(u∗, v, η∗) ≤ L(u∗, v∗, η∗) ≤ L(u, v∗, η)

for u ∈ U , v ∈ �m+r , and η ∈ V , or explicitly

−vT (Āu∗ − η∗) ≤− (v∗)T (Āu∗ − η∗)
≤ (M̄u∗ + p̄)T (u− u∗) − (v∗)T (Āu− η)

for u ∈ U , v ∈ �m+r , and η ∈ V . The left inequality above implies
Āu∗ = η∗, and the right inequality implies

(M̄u∗+p̄)T (u−u∗)−(v∗)T (Āu−Āu∗)+(v∗)T (η−η∗) ≥ 0

for u ∈ U , η ∈ V , which follows

(M̄u∗ + p̄− ĀT v∗)T (u− u∗) + (v∗)T (η − Āu∗) ≥ 0

for u ∈ U , and η ∈ V . By replacing η with v, the above inequality
can be written in compact form (10), which proves the “only if” part
of the theorem. Conversely, if the above inequality holds, since u∗ is
also a parameter in φ(u), according to the definition of u∗, it solves
LVI (8). The “ if” part is thus proved. �

Inequality (10) represents a class of general variational inequality
[24]. Thus, the following GPNN presented in [24] can be applied to
solve the problem:

• State equation

dw

dt
=λ(M̃ + Ñ)T

{
−Ñw + PW

(
(Ñ − M̃)w − p̃

)}
(12a)

• Output equation

x = Qu+ q (12b)

where λ > 0 is a scalar, Q, q are defined in (5), and PW(·) is a
projection operator defined in (9), which is used as the activation
function. Componentwise, there are totally n+m scalar activation
functions, which implies that there should be n+m neurons in the
network. In addition, for this neural network, the number of neurons
is equal to the number of states wi.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007 1417

B. Stability Analysis

In what follows, let We = Ue × Ve denote the equilibrium set of
neural network (12). According to [28], w∗ = ((u∗)T , (v∗)T)T is a
solution of (10) if and only if it is a solution of the following equation:

PW
(
(Ñ − M̃)w − p̃

)
= Ñw.

It is easy to verify that when M̄ ≥ 0, M̃ + Ñ is nonsingular, which
leads to the following lemma.
Lemma 2: If M̄≥0, then Ω∗={x∈�n|x=Qu+q, u∈Ue}.
Theorem 3: Consider the neural network (12) for solving LVI (1)

with Ω defined in (2).

1) If M̄ ≥ 0, then the state of the neural network is stable in the
sense of Lyapunov and globally convergent to an equilibrium,
which corresponds to an exact solution of the LVI by the output
equation.

2) Furthermore, if M̄ > 0, then the output x(t) of the neural
network is globally asymptotically stable at the unique solution
x∗ of the LVI.

Proof: Part 1 of Theorem 3 directly follows from
Lemma 2 and [24, Corollary 4] by noting that

M̃T Ñ =

(
M̄T O
O O

)
≥ 0

because M̄ ≥ 0 by assumption. If in addition M̄ > 0, the mapping
M̄x+ p̄ is then strongly monotone on Ω̄. According to [1, Corollary
3.2], there exists a unique solution u∗ to LVI (8). It follows from
Lemma 2 and part 1 of the theorem that the output of the neural
network x(t) is globally asymptotically stable at x∗ = Qu∗ + q, i.e.,
the unique solution of LVI (1). �

Note thatM ≥ (>)0 implies M̄ = QTMQ ≥ (>)0.

C. Model Comparisons

In this subsection, several salient recurrent neural network (RNN)
are presented for solving the LVI (1) in comparison with the designed
GPNN (12). The criteria include the stability conditions and the
structural complexity. A typical quantity characterizing the structural
complexity is the number of neurons in a network as each neuron
entails an activation function. However, in many cases, this number
alone cannot characterize the overall structural complexity. In what
follows, the numbers of states in different RNNs are also compared.

According to Xia [13], [14], the following extended projection
neural network can be used to solve LVI (1):

d

dt

(
x
y
z

)
=λ

(−x+PX
(
x−Mx− p− (A′)T y +BT z

)
−y +(y +A′x− a′)+

−Bx+c

)
(13)

where λ > 0 is a scaling factor, and

A′ =

(
A

−A

)
, a′ =

(
y

−y

)

where h+ = (h+
1 , h

+
2 , . . . h

+
2m)T with h+

i = max(hi, 0). Clearly,
there are n+ 2m activation functions in the network. Cor-
respondingly, there are n+ 2m artificial neurons in the net-
work. The state of the neural network is (xT , yT , zT)T ∈
�n+2m+r . The global convergence property of the neural network
requires thatM > 0.

As mentioned in Section I, if M is symmetric, then LVI (1) is
equivalent to the optimization problem (3), and many neural networks
for convex quadratic optimization can be used to solve the LVI, e.g.,

the primal-dual neural network in [16] and an improved version in
[19]. Because both neural networks can solve problems with equality
constraints and bound constraints only, to deal with the inequality
constraints Ax ∈ Y in (2), slack variables have to be used, which
leads to n+ 2m+ r state variables in both models. As the neural
network in [19] is simpler than that in [16] in terms of the number
of connections among neurons, we only present the former for solving
(3) for comparison, i.e.,

d

dt

(
x

z

)
=λ

(
I O

−B′′ I

)

·
(−x+ PX×Y

(
x−M ′′x−p′′ +(B′′)T z

)
−B′′x+c′′

)
(14)

where λ > 0, and

M ′′ =

(
M O
O O

)
p′′ =

(
p

O

)

B′′ =

(
A −I
B O

)
c′′ =

(
O

c

)
.

This neural network has n+m activation functions (then n+m
neurons) and n+ 2m+ r states.

In order to reduce the number of states of neural networks for
quadratic programming, a simplified dual neural network was recently
devised [22]. For solving (3), its state equation can be written as

du

dt
= λ
{
−A′′′G(A′′′)Tu+ PY×X

×
(
A′′′G(A′′′)Tu−u+A′′′s

)
−A′′′s

}
(15)

where λ > 0, A′′′ = (AT , I)T , and

G =M−1 −M−1BT (BM−1BT)−1BM−1

s =M−1
(
BT (BM−1BT)−1(BM−1p+ c) − p

)
.

In neural network (15), the bound constraints are unified into inequal-
ity constraintsA′′′x ∈ Y × X , which leads to fewer states in the model
than in (14). Actually, (15) entails n+m states only. However, both
neural networks entail n+m neurons. The disadvantage of (15) is
that it requires M to be positive definite, whereas (14) requires M to
be positive semidefinite only.

Neural network models (14) and (15) are believed to be two typical
representatives for convex quadratic programming in terms of stability
conditions and model complexity, respectively. It is possible to design
a neural network with less than n+m neurons or states for solving
(1) based on differential inclusion theory [29]; nevertheless, the con-
vergence of the network will definitely depend on some parameters,
which are often inconvenient to choose.

It should be mentioned that the neural networks in [13], [14],
[19], and [2] can solve LVI (1) via solving LVIs (7) and (8) under
certain conditions. Following a similar analysis to what is done in
this subsection, one can obtain the stability conditions and the number
of neurons and states in the neural networks for solving these LVIs
directly, which are summarized in Table I for comparison. In the
table, the conditions in the first column are always stronger than the
corresponding ones in the last column because of the presence of
equality constraints in the LVI (1). Note that (7) is equivalent to (1) if
M̄ > 0, and therefore, for solving (7), this condition is always required
(see the second column in the table). Then, for a fair comparison for
solving (1), one may focus on the last column because (8) is always

1418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007

TABLE I
COMPARISON WITH SEVERAL SALIENT NEURAL NETWORKS IN THE LITERATURE FOR SOLVING LVIs (1), (7), AND (8) DIRECTLY

equivalent to (1). It can be concluded that, even if all neural networks
are used to solve (8), the proposed neural network (12) is superior to
others.

D. Special Cases

In order to facilitate the design of GPNNs for users, we briefly
present the results for some special cases. First, consider the LVI with
Ω defined by

Ω = {x ∈ �n|Ax ∈ Y, x ∈ X} (16)

where the parameters are same as in (2). By comparing the structure
of this LVI with that of (8), we can design the following GPNN for
solving the problem:

dw

dt
= λ(M̂ + N̂)T

{
−N̂w + PX×Y

(
(N̂ − M̂)w − p̂

)}
(17)

where λ > 0, andw = (xT , yT)T is the state variable that is of n+m
dimensions, and

M̂ =

(
M −AT

O I

)
N̂ =

(
I O
A O

)
p̂ =

(
p

O

)
.

The output of the neural network is x(t), which is a part of the state
variable w(t). Clearly, for solving this LVI, neural networks (13) and
(14) require more than n+m states, and neural network (15) requires
n+m states exactly. The stability results of neural network (17) can
be obtained from Theorem 3 by replacing M̄ withM in the statements.

Next, consider the LVI with Ω defined by

Ω = {x ∈ �n|Bx = c, x ∈ X} (18)

where the parameters are the same as in (2). It is easy to see that neural
network (12) with all parameters unchanged, except for the following
two:

Ā→−B−1
I BII

V →
{
u ∈ �r|xI −B−1

I c ≤ u ≤ xI −B−1
I c
}

(19)

can be applied to solve the problem; and the convergence results can
be stated as the same as that in Theorem 3. Moreover, the number of
neurons (as well as states) of this neural network is n, which is equal
to the dimension of the solution of the LVI.

If the equality constraints Bx = c are present, and M is already
positive semidefinite, for designing a globally convergent neural net-
work, it is not necessary to employ the substitution technique discussed
in Section II to eliminate the equalities; instead, one can convert the
equality constraints Bx = c into inequality constraints c ≤ Bx ≤ c,

and then formulate a neural network similar to (17). Of course, the
resulting neural network will have more neurons than that formu-
lated with the substitution technique. This could not be a serious
problem, however, if there are only few equalities in the constraints,
i.e., Rank(B) = r � n. Moreover, in the following, we show that
the resulting neural network, in the case of Ω defined in (18), is a
generalization of the primal-dual network in [16] for solving linear
or quadratic programming problem (3) with this type of Ω. Actually,
from the above arguments, the state equation of the resulting neural
network in this circumstance can be derived directly from (17) as

d

dt

(
x

z

)
= λ

(
MT + I BT

−B I

)

·
(
−x+ PX

(
(I −M)x+BT z − p

)
−Bx+ PZ(Bx− z)

)

where Z = {z ∈ �r|c ≤ z ≤ c}. By noticing that PZ is a constant c,
the equation is rewritten as

d

dt

(
x

z

)
= λ

(
MT + I BT

−B I

)

·
(
−x+ PX

(
(I −M)x+BT z − p

)
−Bx+ c

)
. (20)

If M is symmetric, this neural network is exactly the primal-dual
network [16], although a special case of X = {x ∈ �n|x ≥ 0} is
considered. An improved version of the primal-dual network can be
found in [19] [see also (14)]. The GPNN (20) can be regarded as
another extension of the primal-dual network as its global convergence
requires the positive semidefiniteness of M only while the symmetry
condition is relaxed.

IV. ILLUSTRATIVE EXAMPLES

We use two numerical examples to illustrate the effective-
ness of the designed neural network in comparison with some
other models.
Example 1: Consider an LVI (1) with Ω defined in (2), where

M =

(−3 −2 −1
−5 4 1
3 2 1

)
p =

(
1
0
2

)

x =(−5 −5 −5)T x = (5 5 5)T

A =(1,−4, 4) y = −10 y = 10

B =(1, 1,−1)S c = 5.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007 1419

Fig. 1. Transient behavior of neural network (13) with a random initial point
in Example 1.

Fig. 2. Transient behavior of neural network (12) (state part) with ten random
initial points in Example 1.

Since M is asymmetric, singular, and indefinite, the neural networks
(13)–(15) cannot be applied to solve the problem. Fig. 1 depicts the
state trajectories of neural network (13) with λ = 1 from a random
initial state. It is shown that the trajectories do not converge. Now
we turn to the designed GPNN (12). Let BI = 1 and BII = (1,−1),
which follows

Q =

(−1 1
1 0
0 1

)
M̄ = QTMQ =

(
8 0
0 0

)
.

According to Theorem 3, neural network (12) is globally convergent to
a solution of the LVI. Numerical simulations verified this point. Fig. 2
illustrates the state trajectories of the neural network with λ = 0.1
from ten random initial states. It is shown that the trajectories converge
to a steady state (1.000,−2.000, 0.600, 0.000)T , which corresponds
to the unique solution of the LVI x∗ = (2.000, 1.000,−2.000)T , by
the output (12b).

Fig. 3. Output trajectories of neural network (12b) with a random initial point
in Example 2.

Example 2: Consider a quadratic optimization problem (3) with Ω
defined in (18), where

M =




4 3 −4 −2 4
3 2 8 −8 5
−4 8 10 6 −2
−2 −8 6 0 −1
4 5 −2 −1 −4


 p =




3
0
2
6
0




x =(0 0 0 0 0)T , x = (10 10 10 10 10)T

B =

(
1 0 3 −1 −2
0 1 −3 2 −2

)
c =

(
6
0

)
.

Numerical simulation results show that none of the neural networks
(13)–(15) globally converge to a steady state, which is due to the fact
thatM is not positive semidefinite. Let

BI =

(
1 0
0 1

)
BII =

(
3 −1 −2
−3 2 −2

)
.

Then

Q =




−3 1 2
3 −2 2
1 0 0
0 1 0
0 0 1




QTMQ =

(
82 −29 −3
−29 28 −33
−3 −33 80

)
> 0.

This shows that Mx+ p is strictly (also strongly) monotone on
Ω defined by (18), and as a result, there is only one solution
x∗ to the problem, if it exists. According to Theorem 3, neural
network (12) can be applied to solve the problem. All numerical
simulations show that the neural network is globally convergent
to (4.096, 0.082, 1.242, 1.822, 0.000)T , i.e., the unique solution x∗.
Fig. 3 depicts the output trajectories x(t) of the neural network with
λ = 0.1 from a random initial point.
Example 3: Consider the following k-winners-take-all (KWTA)

problem:

xi = f(σi) =
{

1, if σi ∈ {k largest elements of σ}
0, otherwise

1420 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007

Fig. 4. Output trajectories of the general projection network for KWTA
operation with a random initial point in Example 3.

where σ ∈ �n stands for the input vector, and x ∈ {0, 1}n stands
for the output vector. The KWTA operation accomplishes a task of
selecting k largest inputs from n inputs in a network. A variety of
applications as well as computational schemes of this problem can
be found in [22] and references therein. In particular, in [22], the
problem was formulated into a quadratic programming problem under
the hypothesis that the kth largest input is not equal to the (k + 1)th
largest input, and a simplified dual neural network was developed for
KWTA with n neurons [cf. (15)]. Under the same hypothesis, similar
to the arguments given in [22], the KWTA problem can be easily
reasoned equivalent to the following linear programming problem:

minimize −σTx
subject to Bx = k, x ∈ [0, 1]n

(21)

where B = (1, . . . , 1) ∈ �1×n. Then, neural network (12) with the
changes in (19) by setting M = 0, p = −σ, c = k, x = 0, and x = 1
can be used to solve the problem. Explicitly, the neural network can
be written in the following form:

• State equation

d

dt

(
u
v

)
= λ

(
I eT

−e I

)

·
(
−u+ PU

(
u− eT v + [−eT , I]σ

)
eu+ PV(−eu− v)

)

• Output equation

x =

(
−e
I

)
u+

(
k
O

)

where e=(1, . . . , 1)∈�1×(n−1), U = {u∈�n−1|0 ≤ u ≤ 1}, and
V = {v ∈ �| − k ≤ v ≤ 1 − k}. Clearly, this network also entails n
neurons. However, in contrast to [22], it is seen that no parameter is
needed to choose in this network.

In the above KWTA problem, let k = 2, n = 4, and the inputs
σ1 = 5.9, σ2 = 4.0, σ3 = 4.2, and σ4 = −3. Fig. 4 shows the output
trajectories of the GPNN with λ = 104 from a random initial point.
It is seen that the trajectories converge to a point (1, 0, 1, 0)T , which
implies σ1 and σ3 should be selected.

Fig. 5. Inputs and outputs of the GPNN in Example 3.

Next, let k = 2, n = 4, and the inputs be time-varying signals
vi = 10 sin[2π(t+ 0.2(I − 1))], t ∈ [0, 1] ∀i = 1, 2, 3, 4 (see the top
subfigure in Fig. 5). The other four subfigures in Fig. 5 record the
outputs of the network at each time instant t. It is readily checked that
the outputs are correct.

V. CONCLUDING REMARK

In this correspondence, we have presented a design method of
the GPNN for solving a class of LVIs with linear equality and two-
sided linear inequality constraints. The neural network is globally
convergent to a solution of the problem under the condition that the
linear mapping Mx+ p is monotone on the constrained set Ω. As
this condition is weaker than M being positive semidefinite, which
is always required by existing neural networks in the literature, the
designed neural network is superior in terms of stability conditions.
Moreover, the designed model is of lower structural complexity than
most existing ones. Special cases are discussed for solving LVIs with
different types of linear constraints. Several numerical examples are
discussed to illustrate the good performance of the designed neural
networks.

REFERENCES

[1] P. T. Harker and J. S. Pang, “Finite-dimensional variational inequal-
ity and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications,” Math. Program., vol. 48, no. 1–3, pp. 161–220,
Mar. 1990.

[2] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems, vol. I and II. New York: Springer-
Verlag, 2003.

[3] B. He, “A new method for a class of linear variational inequalities,” Math.
Program., vol. 66, no. 1–3, pp. 137–144, Aug. 1994.

[4] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A model,”
Science, vol. 233, no. 4764, pp. 625–633, Aug. 1986.

[5] M. P. Kennedy and L. O. Chua, “Neural networks for nonlinear pro-
gramming,” IEEE Trans. Circuits Syst., vol. 35, no. 5, pp. 554–562,
May 1988.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007 1421

[6] B. He and H. Yang, “A neural-network model for monotone linear asym-
metric variational inequalities,” IEEE Trans. Neural Netw., vol. 11, no. 1,
pp. 3–16, Jan. 2000.

[7] X. Liang and J. Si, “Global exponential stability of neural networks with
globally Lipschitz continuous activations and its application to linear
variational inequality problem,” IEEE Trans. Neural Netw., vol. 12, no. 2,
pp. 349–359, Mar. 2001.

[8] Y. Xia and J. Wang, “On the stability of globally projected dynamical
systems,” J. Optim. Theory Appl., vol. 106, no. 1, pp. 129–150, Jul. 2000.

[9] Y. Xia, H. Leung, and J. Wang, “A projection neural network and its
application to constrained optimization problems,” IEEE Trans. Cir-
cuits Syst. I, Fundam. Theory Appl., vol. 49, no. 4, pp. 447–458,
Apr. 2002.

[10] Y. Xia, “Further results on global convergence and stability of globally
projected dynamical systems,” J. Optim. Theory Appl., vol. 122, no. 3,
pp. 627–649, Sep. 2004.

[11] X. Hu and J. Wang, “Solving pseudomonotone variational inequalities
and pseudoconvex optimization problems using the projection neural
network,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1487–1499,
Nov. 2006.

[12] X. Hu and J. Wang, “A recurrent neural network for solving a class
of general variational inequalities,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 37, no. 3, pp. 528–539, Jun. 2007.

[13] Y. Xia, “An extended projection neural network for constrained optimiza-
tion,” Neural Comput., vol. 16, no. 4, pp. 863–883, Apr. 2004.

[14] Y. Xia, “On convergence conditions of an extended projection neural
network,” Neural Comput., vol. 17, no. 3, pp. 515–525, Mar. 2005.

[15] X. B. Gao, L. Z. Liao, and L. Q. Qi, “A novel neural network for vari-
ational inequalities with linear and nonlinear constraints,” IEEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1305–1317, Nov. 2005.

[16] Y. Xia, “A new neural network for solving linear and quadratic program-
ming problems,” IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1544–1547,
Nov. 1996.

[17] Y. Leung, K.-Z. Chen, Y.-C. Jiao, X.-B. Gao, and K. S. Leung, “A new
gradient-based neural network for solving linear and quadratic program-
ming problems,” IEEE Trans. Neural Netw., vol. 12, no. 5, pp. 1074–1083,
Sep. 2001.

[18] Q. Tao, J. Cao, and D. Sun, “A simple and high performance neural
network for quadratic programming problems,” Appl. Math. Comput.,
vol. 124, no. 2, pp. 251–260, Nov. 2001.

[19] Q. Tao, J. Cao, M. Xue, and H. Qiao, “A high performance neural network
for solving nonlinear programming problems with hybrid constraints,”
Phys. Lett. A, vol. 288, no. 2, pp. 88–94, 2001.

[20] Y. Xia, G. Feng, and J. Wang, “A recurrent neural network with expo-
nential convergence for solving convex quadratic program and related
linear piecewise equations,” Neural Netw., vol. 17, no. 7, pp. 1003–1015,
Sep. 2004.

[21] Q. Liu, J. Cao, and Y. Xia, “A delayed neural network for solving linear
projection equations and its analysis,” IEEE Trans. Neural Netw., vol. 16,
no. 4, pp. 834–843, Jul. 2005.

[22] S. Liu and J. Wang, “A simplified dual neural network for quadratic
programming with its KWTA application,” IEEE Trans. Neural Netw.,
vol. 17, no. 6, pp. 1500–1510, Nov. 2006.

[23] Y. Yang and J. Cao, “Solving quadratic programming problems by delayed
projection neural network,” IEEE Trans. Neural Netw., vol. 17, no. 6,
pp. 1630–1634, Nov. 2006.

[24] Y. Xia and J. Wang, “A general projection neural network for solv-
ing monotone variational inequalities and related optimization prob-
lems,” IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 318–328,
Mar. 2004.

[25] X. Hu and J. Wang, “Solving generally constrained generalized linear
variational inequalities using the general projection neural networks,”
IEEE Trans. Neural Netw., vol. 18, no. 6, Nov. 2007.

[26] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. New York: Academic, 1982.

[27] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms. New York: Wiley, 1993.

[28] J. S. Pang and J. C. Yao, “On a generalization of a normal map
and equations,” SIAM J. Control Optim., vol. 33, no. 1, pp. 168–184,
Jan. 1995.

[29] M. Forti, P. Nistri, and M. Quincampoix, “Generalized neural net-
work for nonsmooth nonlinear programming problems,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1741–1754,
Sep. 2004.

