
State-Temporal Compression in Reinforcement
Learning With the Reward-Restricted

Geodesic Metric
Shangqi Guo , Qi Yan , Xin Su , Xiaolin Hu , Senior Member, IEEE, and Feng Chen ,Member, IEEE

Abstract—It is difficult to solve complex tasks that involve large state spaces and long-term decision processes by reinforcement

learning (RL) algorithms. A common and promising method to address this challenge is to compress a large RL problem into a small

one. Towards this goal, the compression should be state-temporal and optimality-preserving (i.e., the optimal policy of the compressed

problem should correspond to that of the uncompressed problem). In this paper, we propose a reward-restricted geodesic (RRG)

metric, which can be learned by a neural network, to perform state-temporal compression in RL. We prove that compression based on

the RRG metric is approximately optimality-preserving for the raw RL problem endowed with temporally abstract actions. With this

compression, we design an RRG metric-based reinforcement learning (RRG-RL) algorithm to solve complex tasks. Experiments in

both discrete (2D Minecraft) and continuous (Doom) environments demonstrated the superiority of our method over existing RL

approaches.

Index Terms—Semi-Markov decision process (SMDP), reward-restricted geodesic (RRG) metric, option, state compression, state-temporal

compression, reinforcement learning (RL)

Ç

1 INTRODUCTION

REINFORCEMENT learning (RL) has made significant prog-
ress in various tasks [1], [2]. However, when solving

complex tasks involving large state spaces and long-term
decision processes, traditional RL algorithmsmay encounter
difficulties. First, large state spaces lead to high sample com-
plexity [3], [4], [5] which represents the number of samples
required to obtain a near-optimal solution with high proba-
bility. Second, long-term decision processes make explora-
tion and temporal credit assignment quite inefficient [6], [7].
For instance, some tasks in Doom (a first-person video game)
reward the agent only when it accomplishes a series of com-
plex behaviors, such as finding a key and then opening a
door in a large room. The reason for the two difficulties is
that an RL problem is typically formalized as a fine-grained
Markov decision process (MDP) in which the agent is
assumed to execute one action in a raw state at each time

step [8]. One approach to tackling these difficulties is to com-
press a large and fine-grained MDP into a small and coarse-
grained one [9], [10], [11], [12].

Many works use compression in RL and they fall into
three categories. The first category performs compression in
the time domain with temporally abstract actions. Each tem-
porally abstract action is associated with a policy over prim-
itive actions and enables the agent to make decisions at a
long time span instead of at a single time step [13]. RL with
temporally abstract actions has been applied to solve tasks
with long-term sparse rewards [6], [14], [15]. However, it
remains a challenging problem to optimize the policy over
temporally abstract actions for large-scale state spaces
because the space size of temporally abstract actions scales
with the state space. The second category performs com-
pression in the state space by aggregating similar states [16],
[17]. Nevertheless, state compression does not tackle the dif-
ficulty induced by long-term decision processes and sparse
rewards. The third category performs compression in both
the state space and the time domain [12], [18], [19], i.e.,
state-temporal compression. These methods, however, are
either impractical or not optimality-preserving. Thus, state-
temporal compression is still an open problem.

Since an MDP with temporally abstract actions is formu-
lated as a semi-MDP [13, SMDP], state-temporal compression
in an MDP can be transformed into state compression in an
SMDP. The core of state compression is to measure the simi-
larity between states [9]. Therefore, state-temporal compres-
sion can be carried out by measuring a state metric in an
SMDP. Ferns et al. [20] proposed a bisimulation metric to
measure the similarity between states in an MDP. They
proved that the compression based on the bisimulation metric
approximately preserves the optimality of the uncompressed

� Shangqi Guo, Qi Yan, Xin Su, and Feng Chen are with the Department of
Automation, Tsinghua University, Beijing 100086, China. E-mail: {gsq15,
q-yan15, suxin16}@mails.tsinghua.edu.cn, chenfeng@mail.tsinghua.edu.cn.

� Shangqi Guo, Qi Yan, Xin Su, and Feng Chen are with the Beijing Innova-
tion Center for Future Chip, Beijing 100086, China, and also with the
LSBDPA Beijing Key Laboratory, Beijing 100084, China. E-mail: {gsq15,
q-yan15, suxin16}@mails.tsinghua.edu.cn, chenfeng@mail.tsinghua.edu.cn.

� Xiaolin Hu is with the Department of Computer Science and Technology,
Institute for Artificial Intelligence, Beijing National Research Center for
Information Science and Technology, State Key Laboratory of Intelligent
Technology and Systems, Tsinghua University, Beijing 100084, China.
E-mail: xlhu@mail.tsinghua.edu.cn.

Manuscript received 13 March 2020; revised 11 March 2021; accepted 21
March 2021. Date of publication 25 March 2021; date of current version 4
August 2022.
(Corresponding authors: Xiaolin Hu and Feng Chen.)
Recommended for acceptance by L. Li.
Digital Object Identifier no. 10.1109/TPAMI.2021.3069005

5572 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

0162-8828 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0002-1633-2320
https://orcid.org/0000-0002-1633-2320
https://orcid.org/0000-0002-1633-2320
https://orcid.org/0000-0002-1633-2320
https://orcid.org/0000-0002-1633-2320
https://orcid.org/0000-0002-5979-8702
https://orcid.org/0000-0002-5979-8702
https://orcid.org/0000-0002-5979-8702
https://orcid.org/0000-0002-5979-8702
https://orcid.org/0000-0002-5979-8702
https://orcid.org/0000-0002-4907-7354
https://orcid.org/0000-0002-4907-7354
https://orcid.org/0000-0002-4907-7354
https://orcid.org/0000-0002-4907-7354
https://orcid.org/0000-0002-4907-7354
https://orcid.org/0000-0003-4813-2494
https://orcid.org/0000-0003-4813-2494
https://orcid.org/0000-0003-4813-2494
https://orcid.org/0000-0003-4813-2494
https://orcid.org/0000-0003-4813-2494
mailto:gsq15@mails.tsinghua.edu.cn
mailto:q-yan15@mails.tsinghua.edu.cn
mailto:suxin16@mails.tsinghua.edu.cn
mailto:chenfeng@mail.tsinghua.edu.cn
mailto:gsq15@mails.tsinghua.edu.cn
mailto:q-yan15@mails.tsinghua.edu.cn
mailto:suxin16@mails.tsinghua.edu.cn
mailto:chenfeng@mail.tsinghua.edu.cn
mailto:xlhu@mail.tsinghua.edu.cn

RL problem. This metric can be extended to an SMDP by
incorporating multi-step transition models and rewards, but
it is computationally difficult.

In this paper, we present a novel geodesic metric to mea-
sure the similarity between states in an SMDP. It is defined
as the average minimum number of steps required by an
agent to transition from one state to another. One of its
advantages is that it can be learned by a deep neural net-
work efficiently. We prove that compression based on the
geodesic metric induces an approximately optimal policy of
the uncompressed SMDP. To improve the accuracy of the
approximation, we add a reward similarity restriction and
name it the reward-restricted geodesic (RRG) metric. With
compression based on the RRG metric, we design an RRG
metric-based RL (RRG-RL) algorithm. Our experiments on
complex tasks, where only specific complex sequences of
actions were rewarded, demonstrated the superiority of our
framework over existing RL algorithms. In particular, RRG-
RL successfully solved a complex task in the Doom environ-
ment that cannot be solved by existing RL algorithms. In
summary, our contributions are as follows:

� We propose an RRG metric to measure the similarity
between states in an SMDP and prove that compres-
sion based on this metric induces an approximately
optimal policy of the uncompressed SMDP.

� We propose a neural network to learn the RRG
metric.

� We design an RRG metric-based RL (RRG-RL) algo-
rithm to successfully solve some complex tasks.

The rest of our paper is organized as follows. In Section 2,
we discuss the background and related work. In Section 3,
we introduce the mathematical description of state-tempo-
ral compression and the state-temporal compression-based
RL framework. In Section 4, we propose several metrics to
perform state-temporal compression. In Section 5, we intro-
duce an RRG-RL algorithm. In Section 6, we present the
results of our algorithm in two environments. Finally, Sec-
tion 7 concludes and discusses the paper.

2 BACKGROUND AND RELATED WORK

An RL problem is typically formalized as an MDP M,
which is defined as a tuple S;A; p; r; gh i consisting of a
state space S, an action set A, one-step transition
probabilities pðs0 j s; aÞ, one-step rewards rðs; aÞ ¼
E½rtþ1 j st ¼ s; at ¼ a�, and a discount factor g 2 ½0; 1�. The
objective of RL is to maximize the expected cumulative
reward E½

P1
t¼0 g

trtþ1� by optimizing a policy pA : S �A!
½0; 1� over actions.

Some difficulties exist in an MDP. First, the sample com-
plexity of RL algorithms scales with the state space and the
action space [3], [4], [5]. Second, long-term credit assign-
ment remains a major challenge, especially in environments
with sparse rewards, such as complex tasks in Mine-
craft [21], [22] and Doom [18], [23]. These difficulties lie in
the fact that MDPs are fine-grained decision-making pro-
cesses [9], [10], while real-life tasks involve large state
spaces and long-term decision-making processes. One way
to tackle these difficulties is to compress a large and fine-
grained MDP into a small and coarse-grained one. Existing

compression methods fall into three categories: temporal
compression, state compression, and state-temporal
compression.

2.1 Temporal Compression

Many researchers have used temporally abstract actions to
solve complex tasks, which are difficult to solve by flat poli-
cies [6], [18]. There are many variants of temporally abstract
actions, such as options [13], skills [22], subtasks [24], and
sub-policies [21]. We adopt the term “option”. In an MDP
endowed with options, an agent is assumed to output an
option associated with a policy over ground states and
actions [13], [25]. The agent makes decisions over options at
a larger span of time steps instead of a single time steps,
which can be taken as temporal compression.

An option o is defined as a tuple ðIo;vo;boÞ consisting of
three components: an initiation set Io � S, an option
policy vo : S �A! ½0; 1�, and a termination
function bo : S ! ½0; 1�. Option o is available in state s if and
only if s 2 Io. When option o is selected, vo produces actions
until o terminates at state s according to bo sð Þ. We assume
that all options terminate in finite time with probability 1.
Particularly, we introduce one important type of options—
the subgoal option [6], [12], [13], [19]. It is defined as a
tuple g , ðIg;vg;bgÞ along with a subgoal state sg 2 S,
where Ig is a set of initial states ensuring that option g can
reach sg; vg : S �A! ½0; 1� is a subgoal option policy (that
is to reach sg as quickly as possible); bg : S ! ½0; 1� is a termi-
nation function (that is to terminate g once sg is reached).

Let OðsÞ be the set of available options for each
state s 2 S and O , [s2S OðsÞ be the set of all options. An
MDP endowed with O is modeled by an SMDP [13] defined
as a tuple N ¼ S;O; P;R; gh i, where P : S �O� S ! ½0; 1�
and R : S �O! R denote multi-step transition models and
rewards for options, respectively. R and P indicate the out-
comes of an option at many different time steps instead of
one time step, and are defined as [13]

P s0 j s; oð Þ ,
X1
k¼1

gkP s0; k j s; oð Þ; (1)

R s; oð Þ , E
Xk�1
i¼0

girtþ1þijst ¼ s; ot ¼ o

" #
; (2)

where t denotes the time at which o is initialized; k denotes
a random number of steps needed for executing
option o; P ðs0; k j s; oÞ denotes the probability that option o
terminates at s0 after k time steps. As the multi-step transi-
tion model incorporates a discount factor, P ðs0 j s; oÞ is a
sub-probability (i.e.,

P
s02S P ðs0 j s; oÞ < 1) [25], [26], [27].

The SMDP objective is to optimize a policy p : S �O!
½0; 1� over options to maximize the value function defined
as [13]

Vp sð Þ ¼
X

o2OðsÞ
p o j sð Þ R s; oð Þ þ

X
s0

P s0 j s; oð ÞVp s0ð Þ
 !

: (3)

The option framework is a hierarchical reinforcement
learning (HRL) framework because it consists of two

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5573

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

policies: policy pðo j sÞ over options and option
policy voða j sÞ over actions. This framework aims at solving
tasks with long-term sparse rewards but does not reduce
the complexity of state spaces. Since the option policy is in
terms of primitive states and actions, the space of option
policies is vast when state space S is very large, which
makes the option framework difficult to optimize. Thus,
compressing the state space in an SMDP is important.

2.2 State Compression

The core of state compression is to aggregate similar states
into an abstract state. State compression can be modeled as
a function f : S ! X mapping from a state space S to an
abstract state space X, which converts an MDP M¼
S;A; p; r; gh i to an abstract MDP Mf ¼ X;A; pf;

�
rf; gi.

Let S be the power set of S and f�1 : X ! S be the inverse
map of f; then, rf x; að Þ and pf x0 jx; að Þ are respectively
defined as [9]

rf x; að Þ ,
X

s2f�1 xð Þ
w s jxð Þr s; að Þ; (4)

pf x0 jx; að Þ ,
X

s02f�1 x0ð Þ

X
s2f�1 xð Þ

w s jxð Þp s0 j s; að Þ; (5)

where w s jxð Þ measures the contribution of state s to
abstract state x and satisfies the normalization conditionP

s2f�1 xð Þ w s jxð Þ ¼ 1. This constraint ensures that Mf can
be studied in a Markovian way [9].

Ferns et al. [20], [28] proposed the bisimulation metric to
measure the similarity between states. Given MDP M, for
any s1; s2 2 S, the bisimulation metric is defined as [20]

dBðs1; s2Þ , maxa2Afcrjrðs1; aÞ � rðs2; aÞj

þ cpdp p � j s1; að Þ; p � j s2; að Þð Þg; (6)

where cr and cp are two positive constants; dp is a probabil-
ity metric. cr and cp are the weights of the distance between
rewards and the distance between transition probabilities,
respectively [20]. There are many probability metrics [29];
two of the most important ones are the Kantorovich metric
and the total variation metric [20]. Ferns et al. [20] proved
that dB induces a bisimulation metric when dp is the Kantor-
ovich metric.1 Evidently, the bisimulation metric satisfies
the non-negativity, symmetry, and triangle inequality con-
ditions but not the identity condition (dB s1; s2ð Þ ¼ 0 does
not entail s1 ¼ s2). Therefore, dB is a pseudo-metric.

Ferns et al. [20] proved that compression based on the
bisimulation metric approximately preserves the optimal
policy of the uncompressed MDP. Also, bisimulation met-
rics can be used to construct options automatically [26]. Cas-
tro [30] proposed a scalable method for computing
bisimulation metrics with a neural network in a determin-
istic MDP.

There also exist other state compression methods. Some
researchers have proposed approximate MDP homomor-
phisms which aggregate states with similar one-step transi-
tion probabilities and rewards into an abstract state [12],
[16], [17]. Taylor et al. [31] proposed a lax version of bisimu-
lation metrics to bridge approximate MDP homomorphisms
and bisimulation metric-based state compressions. How-
ever, state compression in MDPs does not consider tempo-
rally abstract actions.

2.3 State-Temporal Compression

Abel et al. [32] presented four state-abstraction-option clas-
ses that give rise to suboptimality bounds relative to the
environmental MDP, but they did not focus on state similar-
ity measurement. Ravindran and Barto [12] proposed an
SMDP homomorphism that aggregates only the states with
identical multi-step transition models and rewards.
Although this approach preserves the optimality of the raw
SMDP, few states are identical in an environment [10] and
the SMDP homomorphism is computationally intracta-
ble [11]. Castro and Precup [25], [27] extended the bisimula-
tion metric to an SMDP and introduced the notion of
option-bisimulation metric. However, this metric is difficult
to calculate because its computational cost scales exponen-
tially with the maximum number of steps required for exe-
cuting an option. Several studies proposed heuristic
compression approaches in the option framework [33], [34],
but they are challenging to be applied to complex and con-
tinuous environments. Thus, these approaches are impracti-
cal in realistic scenarios.

Function approximation can be seen as a form of state
compression that maps the raw space to a lower-dimen-
sional space, which is learned by optimizing the RL objec-
tive in an end-to-end manner. Some studies perform both
state and temporal compression through combining neural
networks and HRL, such as feudal HRL (and its var-
iants) [18], [19] and option-critic with neural networks (and
its variants) [14], [35], [36]. Two problems exist in these
algorithms. First, the function that applies dimension reduc-
tion to the raw state space is learned through maximizing
the expected cumulative reward. However, this could be
very difficult for tasks with sparse rewards. Second, dimen-
sion reduction compresses the representation of states but
does not necessarily compress the number of states. Conse-
quently, the space of state representation may still be large.
It is also unclear whether and how the optimal solution in
the compressed state representation corresponds to that in
the raw space. In summary, how to perform practical and
optimality-preserving state-temporal compression is still an
open question.

3 STATE-TEMPORAL COMPRESSION-BASED RL
FRAMEWORK

Since an MDP with options is formulated as an SMDP [13],
state-temporal compression in an MDP can be transformed
into state compression in an SMDP. State compression can
compress an SMDP into an abstract SMDP. Therefore, state-
temporal compression converts an MDP to an abstract
SMDP, as shown in Fig. 1a. Aggregating similar states is
more practical than aggregating only identical states

1. If dB s1; s2ð Þ ¼ 0 is a necessary and sufficient condition for s1 to be
bisimilar to s2, dB is a bisimulation metric [20], [26], [27]. When dp is the
total variation metric, dB s1; s2ð Þ ¼ 0 is a sufficient but not necessary con-
dition for s1 to be bisimilar to s2, and thus dB is not a bisimulation
metric.

5574 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

because few states are identical in environments [10], [16],
[37]. Therefore, state compression can be carried out by
measuring the similarity between states in an SMDP.

As shown in Fig. 1b, we introduce a state-temporal com-
pression-based RL framework that consists of three mod-
ules: a state compression module, an option module, and an
abstract agent module. The state compression module maps
a raw state to an abstract state with function fðsÞ. The
abstract agent module receives an abstract state and produ-
ces an option o according to policy pfðo jxÞ. The option
module takes a raw state and produces an action according
to option policy voða j sÞ. As discussed above, the core of the
framework is to find an appropriate state metric to measure
the similarity between states in an SMDP.

We adopt the definition of metric-based state compres-
sion in an MDP [38]. Let d denote a metric and � denote a
compression threshold. We introduce the definition
of �; dð Þ-compression.

Definition 1. �; dð Þ-compression is defined as a
surjection f�;d : S ! X that satisfies

d s1; s2ð Þ � �; 8x 2 X and s1; s2 2 f�1�;d xð Þ; (7)

whereX denotes an abstract state space and f�1�;d xð Þ denotes the
inverse image of abstract state x.

�; dð Þ-compression can be considered as �-neighborhood
clustering that clusters the states if the metrics between
them are less than �. It converts an SMDP N ¼ S;O; P;R; gh i
to an abstract SMDP N f�;d ¼ X;O; Pf�;d ; Rf�;d ; g

D E
. Similar to

Eqs. (4) and (5), multi-step reward Rf�;d and transition
model Pf�;d inN f�;d are respectively defined as

Rf�;d x; oð Þ ,
X

s2f�1
�;d

xð Þ
w s jxð ÞR s; oð Þ; (8)

Pf�;d x0 jx; oð Þ ,
X

s02f�1
�;d

x0ð Þ

X
s2f�1

�;d
xð Þ
w s jxð ÞP s0 j s; oð Þ; (9)

where w s jxð Þ measures the contribution of state s to
abstract state x and must satisfy the normalization
condition

P
s2f�1

�;d
xð Þ w s jxð Þ ¼ 1. If �; dð Þ-compression

approximately guarantees the optimal policy of the raw
SMDP, it is approximately optimality-preserving state-tem-
poral compression. In the following sections, we discuss

several metrics to make �; dð Þ-compression approximately
optimality-preserving.

4 METRICS FOR STATE-TEMPORAL COMPRESSION

In this section, we propose several metrics to perform state
compression in an SMDP. The basic idea is to aggregate
states within a short distance (small metric) in an appropri-
ate space such that the compressed SMDP in that space
approximately preserves the optimality of the raw SMDP.

4.1 Multi-Step Metric

As mentioned above, the core of state-temporal compres-
sion is to measure the similarity between states in an SMDP.
Similar states in an SMDP should satisfy two conditions: (1)
the available option sets for similar states should be the
same; (2) the multi-step transition models and rewards for
similar states should be similar. We then introduce the
multi-step metric as follows.

Definition 2. For any s1; s2 2 S, the multi-step metric is defined
as

dMðs1; s2Þ , maxo2Oðs1Þ\Oðs2ÞfcRjRðs1; oÞ �Rðs2; oÞj

þ cP dp P � j s1; oð Þ; P � j s2; oð Þð Þg

þ cHH Oðs1Þ; Oðs2Þ½ �;
(10)

where cR, cP , and cH are positive constants. The
function H½x; y� ¼ 0 if x ¼ y, and 1 otherwise. cH is a suffi-
ciently large constant such that dMðs1; s2Þ � � implies
that Oðs1Þ equals Oðs2Þ.

We assume without loss of generality that intersection
Oðs1Þ \Oðs2Þ is nonempty in Definition 2. One can easily
extend the notion of multi-step metric to the situation,
where intersection Oðs1Þ \Oðs2Þ is empty, by defining met-
ric value dMðs1; s2Þ as infinity. All our theories can be
applied to the extended definition because ð�; dÞ-compres-
sion only aggregates states with metric values smaller than
an � < 1. In the rest of the paper, we set cR ¼ 1=ð1� gÞ
and cP ¼ 1. Same as the bisimulation metric, the multi-step
metric is a pseudometric: it satisfies the non-negativity,
symmetry, and triangle inequality conditions but not the
identity condition.

There are two differences between the option-bisimula-
tion metric and the multi-step metric. First, the option-

Fig. 1. (a) State-temporal compression. It converts an MDP to an abstract SMDP. (b) State-temporal compression-based RL framework.

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5575

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

bisimulationmetric [25], [27] does not containH½Oðs1Þ; Oðs2Þ�
because the available option set for each state is assumed to
be the same. Second, the option-bisimulation metric uses the
Kantorovich metric as dp. By contrast, we employ the total
variation metric as dp because it is easy to analyze.2 The
choice of dp does not alter the fact that calculating the multi-
step metric is expensive. Its computational cost scales expo-
nentially with the maximum number of steps for executing
an option since the multi-step transition model and reward
are the outcomes of an option atmany different steps.

Suppose two states have the same available option sets
and similar multi-step transition models and rewards. In
that case, the expected returns for the two states are similar
according to the Bellman equation (i.e., Eq. (3)) in an SMDP.
Therefore, �; dMð Þ-compression can approximately preserve
the value function over options in an SMDP. Like previous
state compression studies [17], [20], [31], [37], we assume
without loss of generality that the value range of one-step
rewards is normalized to ½0; 1� in the following theorems.

Let bpf�;dM
ðo jxÞ be the optimal policy for abstract

SMDP N f�;dM
, bpe

f�;dM
ðo j sÞ , bpf�;dM

ðo jf�;dM
ðsÞÞ be the

extended policy (not necessarily optimal) of bpf�;dM
on

SMDP N , and bpðo j sÞ be the optimal policy for SMDP N .
We have the following theoretical result.

Theorem 1. The policy bpe
f�;dM

o j sð Þ induced by �; dMð Þ-compres-
sion approximates the optimal policy bp ojsð Þ for SMDP N with
an error bound of

k Vbp � Vbpe
f�;dM

k1� EV �; dMð Þ , 2�e Hð Þ; (11)

where eðHÞ ¼ 1�gH
1�g

1
cR
þ 1

cP ð1�gÞ

� �
and H denotes the horizon

of SMDP N (i.e., the maximum number of decisions that the
agent makes over options).

Proof. The proof is provided in Supplementary Materials,
which can be found on the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2021.3069005. tu

In the rest of the paper, we call policy bpe
f�;dM

theEV �; dMð Þ-
optimal policy. The complexity of error bound EV �; dMð Þ
isOð2�=ð1� gÞ2ÞwhenH is infinite. If RL tasks are composed
of several sequential sub-tasks (i.e., H is small), EV �; dMð Þ is
scaled down by a factor of 1=ð1� gÞ. There exist a variety of
state compression criteria in an MDP that enable state com-
pression to approximately preserve the optimality of the
uncompressed MDP. We summarize the properties of some
important compression types in Table 1.

Computational Complexity. Let t denote a state-action tra-
jectory and PT ðt j s; oÞ denote the distribution over trajecto-
ries taken by option o at state s. As options are assumed to
terminate in finite time with probability 1, the maximum
length (denoted by Tmax) of trajectories is finite but can be
very large. We then rewrite Eqs. (1) and (2) as

P s0 j s; oð Þ ¼
X
t2T s0

PT t j s; oð Þ; (12)

R s; oð Þ ¼
X
t2T

PT t j s; oð Þ
XTmax�1

k¼0
gkr stþk; atþkð Þ; (13)

where T represents the set of all trajectories; t is the time at
which option o is initialized; T s0 represents the set of the tra-
jectories whose end states are s0. Substituting Eqs. (13)
and (12) into Eq. (10), one can find that the computation of
metric dM enumerates the trajectory set T with the
number OððjSj2jAjÞTmaxÞ of trajectories. Thus, the computa-
tional complexity of metric dM is OððjSj2jAjÞTmaxÞ. To com-
pute ð�; dMÞ-compression, we must calculate metric dM
between any states s1; s2 2 S. As Tmax can be very large, it is
very difficult to calculate the multi-step metric.

Metric-Convertibility Condition. To find a practical metric
to replace the multi-step metric, we propose a metric-con-
vertibility condition:

Proposition 1. If two metrics d1 and d0 satisfy the inequality

d1 s1; s2ð Þ � Bd0 d0 s1; s2ð Þð Þ; 8s1; s2 2 S; (14)

TABLE 1
Error Bounds for Different Compression Types

Compression type Measurement for two states Error bound complexity

State compression for an MDP

Model similarity [37] 8a; x : jrðs1; aÞ � rðs2; aÞj � �1; j
P

s02f�1 xð Þðpðs0 j s1; aÞ � pðs0 j s2; aÞÞj � �1 Oð2�1jSjg=ð1� gÞ3Þ
Model similarity [17] — Oð2�1jXjg=ð1� gÞ2Þ
Homomorphism [16] 8a : jrfðfðsÞ; aÞ � rðs; aÞj � �2;

P
x02X jpfðx0 jfðsÞ; aÞ �

P
s02f�1ðx0Þ pðs0 j s; aÞj � �2 Oðg�2=ð1� gÞ2Þ

Homomorphism [39] — Oðg�2=ð1� gÞ3Þ
Q-values [10] 8a : jq	ðs1; aÞ � q	ðs2; aÞj � �3 (q

	 denotes the optimal value function in an MDP) Oð2�3=ð1� gÞ2Þ
Q-values [10] 8a : dq	ðs1; aÞ=�4e ¼ dq	ðs2; aÞ=�4e (d�e denotes an inter function) Oð2�4=ð1� gÞ2Þ
Bisimulation metric [20] dBðs1; s2Þ � �5 Oð2�5=ð1� gÞÞ

State compression for an SMDP

Multi-step metric dMðs1; s2Þ � � Oð2�=ð1� gÞ2Þ
Geodesic metric dGðs1; s2Þ � � (8� 2 ½0; 1=ð1� gÞÞ) Oð2dð�Þ=ð1� gÞ3Þ
RRG metric dRRGðs1; s2Þ � �ð8� 2 ½0; 1=ð1� gÞÞ) Oð2�=ð1� gÞÞ

Some studies [17], [20], [37] assume the range of one-step rewards to be ½0; 1� while others [10], [16], [39] do not. We assume the range of one-step rewards to be
½0; 1� in this table. Note that � with a subscript represents a compression threshold for the corresponding compression type in an MDP.

2. The total variation metric is usually defined as half of the L1-norm
or the L1-norm of two probability distributions’ difference [29]. We
adopt the second definition: given two probability distributions mðsÞ
and nðsÞ, the total variation metric TV ðm; nÞ is defined
as
P

s2S jmðsÞ � nðsÞj.

5576 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3069005
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3069005

where Bd0 is a monotonically increasing function
and Bd0 0ð Þ ¼ 0, then �; d0ð Þ-compression is also Bd0 �ð Þ; d1

� �
-

compression.

Proposition 1 is easy to prove. The metric-convertibility
condition originates from the idea that �; dð Þ-compression is
a neighborhood clustering. The neighboring states obtained
by metric d0 are also close in metric d1 that is upper-
bounded by Bd0 . If metric d0 upper-bounds multi-step
metric dM as in Eq. (14), �; d0ð Þ-compression induces
an EV Bd0 �ð Þ; dM

� �
-optimal policy of SMDP N . We then start

to look for an appropriate metric d0 and an appropriate
function Bd0 to upper-bound multi-step metric dM.

4.2 Geodesic Metric

We model an option by a subgoal option g. Let GðsÞ be the
available subgoal option set for state s, and G , [s2S GðsÞ
be the set of all subgoal options. Subgoal option g has two
properties: (1) g is available for any state from which the
agent starts and can reach subgoal state sg; (2) vg is the
optimal policy for reaching subgoal sg in the shortest time.
The first property implies that if two states s1 and s2 can
communicate with each other (i.e., state s2 is reachable
from state s1 and vice versa), their available subgoal
option sets Gðs1Þ and Gðs2Þ are the same. The second prop-
erty implies that the closer two states s1 and s2 are, the
more similar the two trajectories (starting respectively
from s1 and s2 to sg) are, as shown in Fig. 2a. In summary,
if two states can communicate with each other and are
close in an environment, the multi-step metric value is
small.

According to our observations, we first consider the
euclidean metric as d0 to measure how close two states are.
However, this metric does not consider the geometric struc-
tures of the environment, thus it cannot measure the relative
distance between two states. As shown in Fig. 2a,
although s1 and s3 are close in the euclidean metric
space, s1 and s3 are far away in the environment because a
wall separates them. States can be considered to lie in a
manifold (for continuous environments) or a graph (for dis-
crete environments), where each state is a node and
weighted edges connect states and encode one-step transi-
tion probabilities [40]. Compared with the euclidean metric,
the geodesic metric, which measures the shortest path
between two points, is a more appropriate metric for a man-
ifold [41]. When adapted to an MDP, the geodesic metric
can be defined as the average minimum number of steps for
transition from one state to another.

Definition 3. For any s1; s2 2 S, the geodesic metric is defined
as

dG s1; s2ð Þ , minps1s2

X1
t¼0

G tð ÞPs1s2 t jps1s2

� �
; (15)

where

G tð Þ ¼
Pt

k¼1 g
k�1; t
 1

0; t ¼ 0;

�
and Ps1s2 t jps1s2

� �
denotes a probability distribution

over t 2 ½0;1Þ [1. Note that t < 1 represents the first hit
time at which the agent reaches s2 starting from s1 under
policy ps1s2 over actions, and t ¼ 1 represents that the agent
never reaches s2 starting from s1 under ps1s2 . If s2 is not reach-
able from s1 under any policy (i.e., Ps1s2ð1 jps1s2Þ ¼ 1;
8ps1s2), dGðs1; s2Þ achieves the maximum value Gð1Þ ¼
1=ð1� gÞ.

We make a state reversibility assumption that any adja-
cent states can access each other through a one-step revers-
ible action (that is, states lie in an undirected graph). This
assumption usually models the state space in an MDP [35],
[40]. We then prove that dGðs1; s2Þ is a metric.

Theorem 2. Under the state reversibility assumption, dG s1; s2ð Þ
is a metric.

Proof. The proof is provided in Supplementary Materials,
available online. tu

In the rest of the paper, we consider � to be much smaller
than 1=ð1� gÞ. dGðs1; s2Þ � � implies that s1 and s2 can com-
municate with each other and are close in an environment,
thus dGðs1; s2Þ can be used as d0. If the reversibility assump-
tion is not satisfied, dG s1; s2ð Þ is asymmetric (i.e., dGðs1; s2Þ
may not equal to dGðs2; s1Þ). One can adopt a symmetric
geodesic metric to measure the distance between states, i.e.,
dGðs1; s2Þ þ dGðs2; s1Þ; this will be considered in future
work.

As the geodesic metric represents the minimum distance
between two states, it depends on the environmental
dynamics but not on a specific policy. Successor representa-
tion [42] and successor feature [43] can also measure the rel-
ative distance between states, but they rely on both the
environmental dynamics and a specific policy.

We define the geodesic space as shown in Fig. 2b, where
the distance between states is measured by the geodesic
metric. We assume that the change in trajectory distribution
PT is smooth in the geodesic space.

Assumption 1. For any two states s1; s2 2 S that can commu-
nicate with each other and any their available subgoal option g,
a non-negative and monotonically increasing function d exists
such that the following inequality holds:

X
t2T

PT t j s1; gð Þ � PT t j s2; gð Þð Þ
�����

����� � d dG s1; s2ð Þð Þ:

State spaces in real-life environments are usually smooth.
A small change in the starting point does not cause a drastic
change in the trajectory for reaching a subgoal. The more

Fig. 2. (a) The relationship between the relative distance and the multi-
step metric dM. (b) The geodesic space which incorporates the environ-
mental structures shown in (a).

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5577

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

distant two starting states are, the more different the trajec-
tories are for transition respectively from the two states to a
subgoal. Thus, function d probably exists, which depends
on the environmental dynamics and can be estimated with
multi-step transition models.

Theorem 3. Under Assumption 1, the following inequality holds
for any s1; s2 2 S

dM s1; s2ð Þ � BdG
dG s1; s2ð Þð Þ , cR

d dG s1; s2ð Þð Þ
1� g

þ cP 1� gð ÞdG s1; s2ð Þ; (16)

when dGðs1; s2Þ < 1=ð1� gÞ.

Proof. The proof is provided in Supplementary Materials,
available online. tu

Combining Theorem 1, Proposition 1, and Theorem 3,
one can obtain:

Corollary 1. For any � 2 ½0; 1=ð1� gÞÞ, �; dGð Þ-compression can
induce an EV �; dGð Þ-optimal policy for SMDP S;G; P; R; gh i
with an error bound of

EV �; dGð Þ ¼ 2e Hð Þ cRd �ð Þ
1� g

þ cP 1� gð Þ�
	

:

As we set cR ¼ 1=ð1� gÞ and cP ¼ 1, the complexity of
error bound EV �; dGð Þ is Oð2dð�Þ=ð1� gÞ3Þ.
Although EV ð�; dGÞmay be large in practical applications, it
can highlight the properties ensuring a tighter bound,
which will benefit further researches.

Computational Complexity Analysis. The geodesic
metric dGðs1; s2Þ requires the optimal policy for transition
from state s1 to state s2, which can be considered as an RL
problem. Since the transition model and reward functions
are unknown, the computation of metric dGðs1; s2Þ is both a
learning problem and a computational one, which is diffi-
cult to solve in environments with large-scale and high-
dimensional state spaces. We analyze this problem from a
computational view in the following.

Since metric dG is the average minimum number of steps
for transition from one state to another, dGðs1; s2Þ � � is
equivalent to be able to transition from one state to another
(and vice versa) within a certain number of steps on aver-
age. Let K be this average number that depends on �, and
F ð�Þ be a quantile function

F yð Þ , inf
k
0

Xk
t¼0

Ps1s2 tjp	s1s2
� �

 y

()
; 8y 2 0; 1½ �; (17)

where p	s1s2 denotes the optimal policy for transition from
state s1 to state s2. Let h be a high probability value, and Kh

be F ðhÞ �K; then, K þKh represents the number of steps
within which the transition from s1 to s2 can be done with a
high probability of h. We require ðK þKhÞ-step transitions
to approximately compute the average minimum step, lead-
ing to a computational complexity of OððjSj2jAjÞKþKhÞ. Note
that Kh is zero for h ¼ 1 in deterministic environments.
Even for high probability h in stochastic environments, Kh

may not be large because the probability distribution over

the first hit time in a stationary Markovian system has a
very habitual form: it goes through a single maximum and
then decays either exponentially or as a power-law [44],
[45]. Additionally, ð�; dGÞ-compression only requires an
indicator of whether the geodesic metric between two states
is less than � instead of the exact metric value, which
inspires us to explore computationally cheap methods to
compress the state space.

4.3 Reward-Restricted Geodesic Metric

Although Corollary 1 shows that compression based on the
geodesic metric induces an EV �; dGð Þ-optimal policy, EV

�; dGð Þ can be very large due to the first term on the right-
hand side of Eq. (16). Neighboring initial states induce simi-
lar trajectories when executing an option o, but the difference
in the cumulative rewards of these similar trajectories can
be large. Only for an environment with sparse rewards will
the difference be small. Thus we need to reduce the cumula-
tive reward difference by incorporating reward information
into the geodesic metric. We then introduce the reward-
restricted geodesic (RRG)metric as follows:

Definition 4. For any s1; s2 2 S, the RRG metric is defined as

dRRG s1; s2ð Þ ,
cR

1� g
maxg2Gðs1Þ\Gðs2Þ R s1; gð Þ �R s2; gð Þj j

þ cPdG s1; s2ð Þ:
(18)

Same as the geodesic metric, dRRG is a metric under the
reversibility condition. We then have a theorem:

Theorem 4. For any s1; s2 2 S, the following inequality holds:

dM s1; s2ð Þ � BdRRG
dRRG s1; s2ð Þð Þ , 1� gð ÞdRRG s1; s2ð Þ;

(19)

when dRRGðs1; s2Þ < 1=ð1� gÞ. Thus, for any � 2 ½0; 1= ð1�
gÞÞ, �; dRRGð Þ-compression induces an EV �; dRRGð Þ-optimal
policy for SMDP S;G; P; R; gh i with an error bound of

EV �; dRRGð Þ ¼ 2 1� gð Þ�e Hð Þ: (20)

Proof. The proof is provided in Supplementary Materials,
available online. tu

Note that the above theorem does not rely on Assump-
tion 1. BoundBdRRG

is much tighter than boundBdG
because

g is usually close to 1 and the first term of BdG
is large. How-

ever, the estimation of multi-step reward R is computation-
ally expensive. This problem can be avoided when an
environment is deterministic or with sparse rewards.

Deterministic Environments. We find that when SMDP
S;G; P;R; gh i is deterministic, multi-step reward R can be
replaced by reward function Rst that only rewards the agent
at the initial state in the process for executing subgoal option g

Rst s; gð Þ ,
X
a2A

vg a j sð Þr s; að Þ; 8s 2 S; g 2 GðsÞ: (21)

We call Rstðs; gÞ the starting-reward function. We then have
the following theorem:

5578 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

Theorem 5. The optimal value in deterministic SMDP S;G;h
P;R; gi equals to that in deterministic SMDP S;G; P; Rst; gh i.

Proof. The proof is provided in Supplementary Materials,
available online. tu

This theorem implies that we can calculate the RRG met-
ric by replacing multi-step reward R with Rst, which
relieves the burden for estimating multi-step reward R. We
call it the starting-reward-based calculation (SR-calculation)
approach.

Environments With Sparse Rewards. In real-life environ-
ments, the agent is often rewarded only in a few states. In
this situation, we adopt the following approach to calculate
the RRG metric: taking each state with nonzero rewards as
an abstract state and then measuring only the similarity
between the states with zero rewards. In terms of measuring
the similarity between states with zero rewards, the RRG
metric is equivalent to the geodesic metric. Thus multi-step
rewards for similar states are the same. This approach is
practical when the states with nonzero rewards are sparse.
We call it the reward-equivalence constraint-based calcula-
tion (REC-calculation) approach.

SR-calculation can also calculate the RRG metric approx-
imately for environments with sparse rewards because
most of states along the trajectory taken by the option have
no reward. As our study focuses on environments with
sparse rewards, the SR-calculation and REC-calculation
approaches can both be used to calculate the RRG metric.
For stochastic environments with dense rewards, however,
we have to estimate multi-step rewards using trajectories
sampled from those environments.

4.4 Geodesic Metric Learning

One advantage of the geodesic metric is that it can be
learned by a neural network. The RRG metric can be cal-
culated with the geodesic metric according to the SR-cal-
culation or REC-calculation approach. Metric learning
learns a distance metric from pairs of points that pre-
serve the distance relation among the training data [46].
For this purpose, we need to construct a training dataset
consisting of pairwise states that preserve the geodesic
metric between them. Since state compression involves
clustering states in the neighborhood of certain anchor
states, the exact distance between states does not need to
be calculated, and we only need to know whether the
distance between two states is smaller than compression
threshold �.

We set K-step discount accumulation G Kð Þ ¼
PK

t¼1 g
t�1

as the compression threshold denoted by �K . The geodesic
metric learning goal is to optimize a neural network to
map the raw state space to another that retains the state
pairs within distance �K of each other while separating
those outside distance �K . We define a training dataset
DK ¼ si; sj

� �
; zij

� �
, where zij ¼ 1 indicates that the transi-

tion from state si to state sj is empirically reachable
within K steps, while zij ¼ 0 indicates otherwise. In the fol-
lowing, we discuss how to obtain training samples for geo-
desic metric learning.

According to Definition 3, calculating the geodesic metric
requires the optimal policy for transition from one state to
another. However, we do not necessarily use optimal policies

to obtain K-step reachable state pairs. We prove that these
state pairs can be obtained by any policies as follows.

Theorem 6. Let VGðs;KÞ , fs0 j dGðs; s0Þ � G Kð Þg be the
K-step distance region at state s in terms of the geodesic metric.
Let pA be a policy over actions and P be the set of all possible
policies. For any s 2 S, we have

VG s;Kð Þ ¼
[

pA2P
VpA

s;Kð Þ; (22)

where VpA
s;Kð Þ , fs0 j

P1
t¼0 G tð ÞPss0 ðt jpAÞ � GðKÞg.

Proof. The proof is provided in Supplementary Materials,
available online. tu

Theorem 6 is based on a basic idea: if the average first hit
time for transition from state s1 to state s2 is less than K
under a non-optimal policy, it is also less than K under the
optimal policy. We use a uniform distribution over actions
as the sampling policy because it can produce sufficiently
diverse action sequences. After drawing state-action
trajectories s0; a0; . . . ; si; ai; . . .f g from the environment, we
construct training datasetDK as follows:

zij ¼
1; ji� jj � K
0; ji� jj
 K þ l;

�
(23)

where we set l > 0 to create a gap between state pairs
within theK-step distance and those beyond.

We build a neural network Cw parameterized with w to
learn the geodesic metric. We call Cw a geodesic-metric net-
work. Fig. 3 intuitively illustrates the learning objective
of Cw, i.e., keeping all the state pairs within the K-step dis-
tance close while separating those beyond the K-step dis-
tance. Given training dataset DK , the neural network Cw is
trained by minimizing the loss function:

L w;DKð Þ

¼ E si;sj;zijð Þ�DK
zijmax k Cw sið Þ �Cw sj

� �
k2 �x; 0

� �2h
þ 1� zij
� �

max xþm� k Cw sið Þ �Cw sj
� �
k2; 0

� �2i
;

(24)

where x is a threshold to differentiate whether two states
are within the K-step distance; m denotes a margin. This
loss function can be considered a variant of the contrastive
loss function [47].

The geodesic-metric network maps a raw state s to a state
representation Cw sð Þ. We call this the geodesic representa-
tion. The geodesic metric is represented as the euclidean
metric on the geodesic representation

dG;w s1; s2ð Þ ¼ �K
x
k Cw s1ð Þ �Cw s2ð Þ k2 : (25)

Like many studies [6], [21], [48], [49], we consider one-step
rewards that are independent of actions (i.e.,
rðsÞ ¼ rðs; aÞ; 8a 2 A). We adopt the SR-calculation
approach to compute the RRG metric, i.e.,

dRRG;w s1; s2ð Þ ¼ cR
1� g

r s1ð Þ � r s2ð Þj j þ cP dG;w s1; s2ð Þ:

(26)

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5579

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

When reward functions are dependent on actions, RRG
metric dRRG;w can be calculated using the REC-calculation
approach which does not require subgoal options.

The successor representation learns continuous similar-
ity between states [42]. By contrast, the objective of geodesic
metric learning is to retain binary similarity between states
(i.e., whether two states are similar or not), which has less
learning burden than the successor representation. Savinov
et al. [50], [51] proposed a classification network to discrimi-
nate whether transition from one state to another is reached
within K steps. Compared with their method, the geodesic
metric network has two advantages. First, a metric network
can be used to partition the state space, which guarantees
each state to be mapped to one partition. Thus, it can be
used to perform state compression in an SMDP. Second, a
metric network can be used to calculate the relative distance
between two states. Therefore, a metric network can pro-
vide reward shaping for goal-reaching tasks where the
agent is rewarded for reaching a goal state. We verified the
advantages of the geodesic-metric network for those tasks
in Section 6.2.

5 RRG METRIC-BASED REINFORCEMENT

LEARNING

In this section, we present an algorithm to perform state-
temporal compression-based RL (see Fig. 1b) using the RRG
metric, called the RRG metric-based reinforcement learning
algorithm (RRG-RL). As shown in Fig. 4, this algorithm has
two phases: a state compression construction phase and an
abstract reinforcement learning phase. The first phase trains
a geodesic-metric network to perform RRG metric-based
state compression (RRG-compression). With this state com-
pression, we then train the subgoal options and the policy
over them.

5.1 Phase 1: RRG-Compression Algorithm

Unlike usual RL settings, our algorithm takes some epi-
sodes to learn the geodesic metrics before training the
agent, as shown in Fig. 4. To fairly compare our algorithm
with many other RL algorithms, we incorporate the met-
ric learning process into the reinforcement learning

process. We train geodesic-metric network Cw in a rein-
forcement learning style. We use a sampling agent
with the uniform policy over actions to interact with
the environment and store the sampled trajectories in
memory MG. With the trajectories evenly drawn
from MG, we construct dataset DK ¼ fðsi; sj; zijÞg accord-
ing to Eq. (23). During the construction, we maintain the
value of label zij to be 1 if state si and state sj were ever
sampled as a K-step reachable state pair in memory MG.
We then use dataset DK to train geodesic-metric
network Cw. Lines 1-1 of Algorithm 1 show this metric
learning process. After geodesic-metric network Cw is
learned, the RRG metric can be easily obtained according
to Eq. (26).

Using RRG metric dRRG;w, we can perform �; dð Þ-compres-
sion. It aggregates states into the same abstract state if the
RRG metric between them is less than a specified compres-
sion threshold. Thus, �; dð Þ-compression can be considered
as threshold-based state clustering [52]. As � is predefined,
the maximum size of state clusters is fixed. The number of
state clusters should correspond to the state space size. In
general, a larger state space entails more state clusters. The
state compression algorithm is shown in Lines 1-1 of Algo-
rithm 1, the aim of which is to divide the raw state space
into some state clusters where the RRG metric between the
central state of each state cluster and any state in this cluster
is less than �K . Let S1; . . . ; Sx; . . .f g denote these state clus-
ters. We compress each state cluster Sx into one abstract
state x. Thus, Sx is the inverse image of abstract state x in
the raw space. Let scx be the center of state cluster Sx and C
be the set of central states; then,we use C to construct a state
compression function as follows:

f�K;dRRG;w
sð Þ ¼ argmin

scx2C
dRRG;w s; scx

� �
: (27)

To simplify the notation, we use fK to denote f�K;dRRG;w

in the rest of the paper. Eq. (27) means that we need to go
through all possible state clusters to compute the abstract
state for each new state. In future work, we will consider
constructing the topology of abstract states. Using this
topology, we can search only the abstract states close to new
states, which shrinks the set of possible state clusters for
new states.

Algorithm 1 does not require all states in the environ-
ment; instead, it requires only the state set S that covers the
environment evenly. For any state s =2 S, fK can find a cen-
tral state scx closest to s in the RRG metric and maps s to

Fig. 3. The geodesic metric learning objective. Geodesic-metric
networkCw maps the state pairs within aK-step distance to neighboring
points (in a circle of radius x) and the state pairs beyond the K-step dis-
tance to distant points (outside the circle of radius x).

Fig. 4. Two phases in training an RRG-RL algorithm.

5580 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

abstract state x, thus guaranteeing each state to be mapped
to an abstract state.

As described in Section 3, function fK compresses SMDP
S;G; P; R; gh i into abstract SMDP X;G; PfK ;RfK ; g

�

.

According to the triangle inequality, the RRG metric
between any two states in the same state cluster is less
than 2�K . Therefore, fK is a 2�K; dRRG;wð Þ-compression func-
tion. According to Theorem 4, this compression induces
an EV 2�K; dRRG;wð Þ-optimal policy of the raw SMDP with
error bound 4 1� gK

� �
e Hð Þ, showing that K is important

for the error bound. The largerK is, the more the state space
will be reduced, and the larger the value of EV 2�K; dRRG;wð Þ
will be. In Section 6, we empirically present the impact of
differentK values on the performance of RRG-RL.

5.2 Phase 2: RRG-RL Algorithm

In phase 2, RRG-RL learns a two-level policy: subgoal
options and a policy over them.

5.2.1 RRG Metric-Based Abstract Subgoal Option

It is difficult to optimize the policy over subgoal options
when the set of subgoal states is large. One way to tackle
this difficulty is to aggregate all subgoal states into several
abstract subgoal states [53], [54]. The option to reach an
abstract state is called the abstract subgoal option [53], [54].
Different from previous studies [53], [54], we use a state-
similarity metric (RRG) to cluster subgoal states into
abstract subgoal states, thus we term our abstract subgoal
option as RRG metric-based abstract subgoal option (RRG-
AS option).

Let ~g denote an abstract subgoal option and x~g be its
abstract subgoal. Similar to subgoal option g, abstract sub-
goal option ~g is defined as a tuple I~g;v~g;b~g

�

, where I~g

denotes an initiation set, v~g ajsð Þ denotes an option policy,
and b~g sð Þ denotes a termination function to terminate ~g
when x~g is reached.

How do we determine whether RRG-AS option ~g reaches
abstract subgoal x~g? A straightforward idea is that as long
as the agent arrives at any state s in inverse image Sx~g of x~g,
RRG-AS option ~g is considered to reach abstract subgoal x~g

and terminated at state s. However, this idea may overlook
some important states within Sx~g . To tackle this problem,
we design a two-stage process for RRG-AS options. As
shown in Fig. 5, each RRG-AS option ~g consists of two
stages: reaching the center of the inverse image Sx~g of x~g

and then reaching raw state s 2 Sx~g . State s is the end state
and determined by function b~gðsÞ. The second stage enables
the states within Sx~g to be explored in a fine-grained way.

Each RRG-AS option ~g can represent a cluster of subgoal
options whose subgoal states belong to Sx~g . For any
state s 2 Sx~g , the option whose subgoal state is s can be approx-
imated by RRG-AS option ~g because the optimal policy for
directly reaching s 2 Sx~g can be approximated by the policy
first reaching the center of Sx~g and then reaching s. We theoreti-
cally analyze the relationship between subgoal options and
RRG-AS options in SupplementaryMaterials, available online.

Optimization of option policy v~g corresponds to termina-
tion function b~g. We can optimize the termination function
using the termination gradient algorithm [14], i.e., both the
option policy and termination function require optimiza-
tion. Whereas, to ease the burden for learning RRG-AS
options, we do not optimize b~g and heuristically design a
non-parametric termination function. Our basic idea is to let
option ~g explore abstract area Sx~g sufficiently instead of ter-
minating at a single end state in the second stage. Option ~g
is terminated in the TDth state after arriving at the central
state scx~g , where TD is a time window in which the agent
explores raw states within Sx~g .

It is efficient to explore the states within Sx~g since they are
close in the environment. Thus, we design an intrinsic
reward to learn RRG-AS option ~g

r~g st; atð Þ ¼ 1� Iarriveð Þ I st ¼ scx~g

h i
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
The first stage

þ �1Iarrive I fK stð Þ ¼ x~g and st 62 h~g

� �|ffl{zffl}
The second stage

þ�2r st; atð Þ;

(28)

Fig. 5. RRG-AS option.

Algorithm 1. RRG-CompressionAlgorithm:Get½f�ðK;N1Þ
Require:K and training episodes N1 of the first phase.
1: Initialize geodesic-metric network parameters w and the

sampling agent with a uniform distribution over actions.
2: for n ¼ 0 : N1 � 1 do
3: Use the sampling agent to sample trajectory

fðst; at; rðstÞÞg from the environment.
4: Store trajectory fðst; at; rðstÞÞg in memory MG and store

state st in set S.
5: Construct datasetDK using the samples from

memoryMG according to Eq. (23).
6: Update parameterswwith loss function Lðw;DKÞ.
7: end for
8: Construct the calculation equation (Eq. (26)) of metric

dRRG;w with the learned geodesic metric dG;w.
9: Sample state swithout replacement from S and take it as

the first central state of set C ¼ sc1 ¼ s
� �

.
10: while S is not ; do
11: Sample state s0 without replacement from S.
12: ifminscx2CdRRG;wðs0; scxÞ > �K then
13: Assign s0 as a central state of new cluster and then

add s0 to set C.
14: end if
15: end while
16: Construct compression function fK with set C according

to Eq. (27).
17: Output: compression function fK .

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5581

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

where Iarrive is 1 after the first time to reach central state scx~g
and Iarrive equals 0 before that; I �½ � ¼ 1 when its argument is
true and zero otherwise; h~g denotes the history trajectory
when executing ~g; �1 and �2 denote weighting factors.
Before arriving at scx~g , the first term in the right of Eq. (28)
drives option ~g to reach scx~g . In continuous environments,
whether the central state is reached can be judged by watch-
ing if the geodesic metric between them is less than a small
predefined threshold. After arriving at scx~g , the second term
in the right of Eq. (28) drives option ~g to explore the states
within the inverse image Sx~g of ~g. Environmental
reward rðst; atÞ is taken as an auxiliary reward for learning
RRG-AS options, thus we set �2 to be smaller than �1.

The learning objective for RRG-AS options is to maxi-
mize the expected cumulative (intrinsic) reward. A range of
techniques can optimize the objective function, such as the
Q-learning and A2C algorithms. We adopt the Q-learning
algorithm to learn RRG-AS option policy. Let Quðs; a; ~gÞ
denote the parameterized Q-value function; then RRG-AS
option policy v~g is expressed as v~gða j sÞ ¼ argmaxa02AQu

ðs; a0; ~gÞ. In the training process, each action a is sampled in
a greedy policy with exploration probability E1 or in a soft-
max policy. Quðs; a; ~gÞ is learned through minimizing the
loss function

J1 uð Þ ¼ E s;a;s0;r~g;~gð Þ�M~g

r~g þ gmaxa02AQu s0; a0; ~gð Þ �Qu s; a; ~gð Þ
� �2h i

;
(29)

whereM~g denotes the replay memory of RRG-AS option ~g.

Algorithm 2. RRG-RL Algorithm

1: Initialize parameters u; #f g, exploration probabilities E1
and E2,K, training episodesN1 of the first phase, and total
training episodes Nepisodes.

2: Obtain compression function: fK Get½f�ðK;N1Þ.
3: for n ¼ N1 : Nepisodes � 1 do
4: Initialize state s s0 and abstract state x fKðsÞ.
5: while s is not a terminal do
6: Choose ~g from QA

ðx; ~gÞ according to the E2-greedy
policy and initialize t~g ¼ 0.

7: while ~g is not terminated and s is not a terminal do
8: Choose a from Qu s; a; ~gð Þ according to the E1-greedy

policy.
9: Execute a, obtain environmental reward r and next

state s0, calculate intrinsic reward r~g, and store
experience ðs; a; s0; r~g; ~gÞ inM~g.

10: Update t~g t~g þ 1 and s s0.
11: Update RfK RfK þ gt~g r.
12: Update u with loss function J1ðuÞ.
13: end while
14: Store the experience ðx; ~g;fKðsÞ; RfK ; t~gÞ inMA.
15: Update #with loss function J2ð#Þ.
16: end while
17: end for

5.2.2 Abstract Agent

RRG-AS options transform optimization of policy pfK g jxð Þ
over subgoal options into optimization of policy pA

fK
~g jxð Þ. A

range of optimization techniques can be used to learn

policy pA
fK

~g jxð Þ. We adopt the Q-learning algorithm.
Let QA

x; ~gð Þ denote the parameterized Q-value function for
the policy over ~g; then, pA

fK
is expressed as pA

fK
~g jxð Þ ¼

argmax~g02~GðxÞQ
A
x; ~g0ð Þ. QA

x; ~gð Þ can be learned by minimiz-

ing the following loss function:

J2 #ð Þ ¼ E
x;~g;x0;RfK

;t~gð Þ�MA

RfK þ gt~gmax~g02~GðxÞQ
A
x0; ~g0ð Þ �QA

x; ~g0ð Þ
� �2� �

;
(30)

where t~g denotes the time steps needed for executing ~g; ~GðxÞ
denotes the set of RRG-AS options available at abstract
state x; MA denotes the replay memory of the abstract
agent. Each ~g is sampled in a greedy policy with exploration
probability E2 (or in a softmax policy). Algorithm 2 illus-
trates the overall RRG-RL algorithm.

6 EXPERIMENTS

To evaluate the performance of RRG-RL, we chose two com-
plex tasks in both a discrete environment (2D Minecraft)
and a continuous environment (Doom). In the two environ-
ments, rewards were given only after accomplishing a spe-
cific complex sequence of actions. All the experiments were
conducted with PyTorch 0.3.1 and Python 3.5.

6.1 Environments

2D Minecraft [21] is a discrete version of the popular game
Minecraft. As shown in Fig. 6, the agent lives in an 11� 22
grid world with many raw materials, such as wood, a work-
bench, a key, and a treasure box. In this environment, the
agent uses coordinate ðy1; y2Þ as the input. It has four avail-
able actions: moving up, down, right, and left. In the envi-
ronment, an action may fail with a probability of 1=5, in
which case the agent randomly chooses one of the other
three actions. The agent can collect raw materials (e.g., a
key) only when reaching the corresponding states. Andreas
et al. [21] used task-specific information to solve complex
tasks in a 2D Minecraft environment. In this work, we
attempted to solve complex tasks without additional task-
specific priors.

The Doom game [2] employs a first-person perspective in
a semi-realistic 3D world (Fig. 7), where the agent can
perform one of three standard actions: moving forward,
turning left, and turning right. The three standard actions
can be combined, yielding 4 combination actions: moving
forwardþturning left, moving forwardþturning right,
turning leftþturning right, and moving forwardþturning

Fig. 6. 2D Minecraft map.

5582 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

leftþturning right. In this experiment, we used the 3 stan-
dard actions and 4 combination actions as the action set.
The input of the agent is a three-channel 84� 84 RGB image
of the 3D environment. In addition to the high-dimensional
state space, Doom tasks are usually complex, and the
rewards are very sparse. For example, some doors require a
key to open, but the key must be searched for by the agent
in a large room. The agent is rewarded only when it opens
the door. To accomplish these tasks, the agent needs to not
only tackle the complex inputs but also carry out efficient
plans in the large-scale state space.

6.2 Results of Geodesic Metric Learning

For the 2D Minecraft task, the geodesic-metric network was
a three-layer (128-128-20) neural network, as shown in the
dashed box in Fig. 11. The first and second layers were
respectively followed by a ReLU and a Tanh activation. As
presented in Algorithm 1, we used a uniform distribution
over actions to sample trajectories from the environment.
We trained the geodesic-metric network with 1000 episodes.
For each episode, we evenly drew samples from
memory MG to construct batch dataset DK which consisted
of ten mini-batches of 64 state pairs. We adopted the Adam
optimizer [55] to optimize the geodesic-metric network.

For the Doom game, the geodesic-metric network was a
convolutional neural network (CNN). As shown in the
dashed box of Fig. 15, all the filters in this CNN had the
same size of 3� 3 with stride 2. Each of its first three layers
had 64 filters. Its fourth layer had 128 filters and the fifth
had 256. The fifth layer was followed by two additional
fully connected layers (the sizes of which were both 256).
The first and second fully connected layers were followed
by a ReLU and Tanh activation, respectively. We used a uni-
form random policy to sample trajectories. At each episode,
we evenly drew samples from memory MG to construct
batch dataset DK which consisted of 10 mini-batches of 128
state pairs. We trained the geodesic-metric network

with 1500 episodes. Other parameters can be found in Sup-
plementary Materials, available online.

We consider the 2D Minecraft environment to visualize the
results of the geodesic metric learning. To compare the learned
geodesic metric dG;w with the ground truth, we chose s ¼ ð4; 8Þ
as an example and visualized the learned geodesic metrics
and the exact geodesic metrics calculated by a discount of 0.9
in Figs. 8b and 8a, respectively. The two figures showed
that dG;w was a good approximation of the exact geodesic met-
ric. Particularly, the closer the state was to (4,8), the more
accurate dG;w was. This scenario was required by ð�; dÞ-com-
pression that compresses only neighboring states.

We compared the learned geodesic metrics with two
baselines: the euclidean metric and the successor represen-
tation [42]. We visualized the euclidean metric based on
raw observations in Fig. 8c. The euclidean metric did not
incorporate the geometric structure of the environment.
Like our geodesic-metric network, the successor representa-
tion was able to encode environmental topology [42], [56].
To make fair comparison, we also used the uniform distri-
bution over actions to sample trajectories from the environ-
ment to learn the successor representation, which also
took 1000 episodes. More details can be found in Supple-
mentary Materials, available online.

The geodesic metric can provide reward shaping for
goal-reaching tasks where the agent is rewarded for reach-
ing a goal state because it measures the relative distance
between two states. These tasks are difficult to solve in a
large and high-dimensional environment [57]. Some
works [19], [48] used the euclidean metric between the
agent’s state and the goal state as the reward shaping for
the goal-reaching task. Compared with the euclidean met-
ric, our geodesic metric is more appropriate for complex
environments. Let sg be the goal state. The metric-based
reward shaping is

rsg s; að Þ ¼ r s; að Þ � ad s; sg
� �

; (31)

where d is a state metric and a is a weighting constant.
Notably, we used this reward shaping function only for
goal-reaching tasks (Fig. 9a) and did not use it for 2D Mine-
craft and Doom tasks. The metric-based reward shaping has
been used in many studies [19], [48], [58]. If the metric d
properly measures the distance between the current state
and the goal state, it will guide the agent to reach the goal.
Empirically, the learned metrics might not be exact for all
state pairs and possibly provided a few wrong rewards,
thus a should not be large and we set it to 0.15.

Fig. 7. Doom game map.

Fig. 8. (a) Groud truth. (b) The learned geodesic metrics. (c) Metric based on raw observations. (d) Metric based on successor representation.
Subfigures (a) to (d) visualize the four metrics between ð4; 8Þ and the other states, respectively. We normalized all the distance values to ½0; 1� with
min-max normalization. Since larger values of the successor representation represent closer states, we used the successor representation’s nega-
tive values and normalized them as the state metrics.

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5583

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

To verify the advantages of the geodesic metric, we
designed a complex environment where the agent is
spawned in a 22� 22 grid world (Fig. 9a). We set the goal as
state s ¼ ð6; 4Þ. We chose two goal-reaching tasks: moving
from random starting points to the goal and moving from
the farthest starting point ð6; 6Þ to the goal. The agent
obtained reward 20 only at the goal state. Thus, extrinsic
rewards were sparse, especially for the second task. We
evaluated several A2C algorithms with the geodesic metric,
with the successor representation, with the euclidean met-
ric, and without reward shaping, respectively. The geode-
sic-metric network for the complex grid world had the same
architecture as that for the 2D Minecraft. All settings of the
four algorithms were the same, except for reward shaping
function dðs; sgÞ. Training parameters can be found in Sup-
plementary Materials, available online. Figs. 9b and 9c illus-
trate that the geodesic metric-based reward shaping
achieved substantially better performance than the three
baselines.

6.3 Results in 2D Minecraft

Task. In this environment, we designed two tasks: a key-
searching task and a key-making task. As shown in Fig. 10a,
the key-searching task required the agent to look for a key
and then use it to open the treasure box. Without the key,
the agent could not open the box or obtain the treasure. In
this task, a reward of 100 was provided only when the agent
successfully opened the box. As shown in Fig. 10b, for the

key-making task, the agent must first collect the iron and
the workbench to produce a key, and then used the key to
open the box. Similar to the key-searching task, a reward
of 100 was provided only when the box was successfully
opened. Both tasks had long-term structural rewards [10]
because the agent was rewarded only when it accomplished
a sequence of specific behavior.

Baseline. Andreas et al. [21] first proposed a 2D Minecraft
environment and solved tasks in the environment by pro-
viding task-specific instruction information. As we
attempted to solve tasks without any additional task priors,
we compared the performance of our approach against
those methods not requiring additional task information.
Kulkarni et al. [6] used a policy over subgoals and subgoal
options to solve complex tasks with long-term structural
rewards, which is essentially a subgoal-based HRL (SHRL)
framework. This framework took the raw state space as the
subgoal space, thus the number of subgoals equaled the
number of states. Since RRG-RL consists of a policy over the
abstract subgoals and the abstract subgoal options, SHRL
can be considered as a special case without state abstraction,
i.e., K ¼ 0. We also evaluated the RRG-RL algorithm in the
cases of K ¼ 2 and K ¼ 4. Furthermore, we compared our
approach against those methods that combine state com-
pression with the subgoal option framework using neural
networks, such as FuN [18] and HIRO [19]. In the two algo-
rithms, the (continuous) output of a neural network is used
as the subgoal; thus, the high-level policy (the policy over
subgoals) is a continuous control policy. We also evaluated

Fig. 9. (a) Complex grid world. Average rewards�std over 10 runs for (b) the goal-reaching task with random starting points and (c) the goal-reaching
task with the farthest starting point. The shaded areas represent the standard deviations.

Fig. 10. (a) The key-searching task. (b) The key-making task. (c) Average rewards�std over 10 runs for the key-searching task. (d) Average
rewards�std over 10 runs for the key-making task. The shaded areas represent the standard deviation.

5584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

the performance of a well-known HRL method, the option-
critic [14].

Implementation. In the two tasks, the agent was initialized
to the same location, as illustrated in Fig. 6. We set the
discount g to 0.995. The experimental details for baselines
are in Supplementary Materials, available online. As shown
in Fig. 4, the RRG-RL algorithm has a two-phase training.
Before the training, our algorithm had no access to any sam-
ples. In the first phase, we trained the geodesic-metric net-
work with 1000 episodes (see details in Section 6.2). We
represented the abstract agent and RRG-AS options with
the tabular method, as shown in Fig. 11. After compressing
the state space using Algorithm 1, we took each abstract
state as an abstract subgoal of RRG-AS option. All states in
2D Minecraft could communicate with each other, thus all
RRG-AS options were available at each state. We assigned a
replay memory to each RRG-AS option. According to Algo-
rithm 2, when an RRG-AS option was selected, the agent
used the option policy to interact with the environment,
stored the sampled trajectory into the replay memory for
the selected option, and then updated the option policy. We
implemented the policy over RRG-AS options using a
greedy policy with the exploration probability 0.95 anneal-
ing to 0:05 as the learning proceeds. We implemented RRG-
AS option policies using a softmax policy with a tempera-
ture of 0:01 annealing to 0:0001. Other parameters are pro-
vided in Supplementary Materials, available online.

Results. To perform RRG-RL, we first used the RRG
metric dRRG;w to perform state compression with Algo-
rithm 1. We then obtained 9 and 24 abstract states
under K ¼ 4 and K ¼ 2, respectively, as shown in Figs. 12a
and 12b. Since we set cR ¼ 1=ð1� gÞ and the agent was
rewarded only in the box state, the RRG metric between the
box state and any other state was very large. Thus, the box
state alone made up an abstract state. For the other

algorithms without state abstraction, the number of states
was 161. After reducing the state space, our RRG-RL algo-
rithm could solve the tasks in an abstract SMDP. In Figs. 10c
and 10d, we illustrated the curves of average rewards�std
of the five algorithms. Table 2 showed the final average
rewards�std of the five algorithms. The results demon-
strated that our algorithm (K ¼ 2; 4) outperformed all the
baselines: it not only achieved higher average rewards but
also converged more quickly than all the baselines in the
two tasks.

By comparing the RRG-RL and SHRL algorithms, we
found that state compression significantly accelerated the
learning of complex tasks, because the RRG-based state
compression reduced the number of subgoals through clus-
tering raw states. As shown in Table 2, when K ¼ 2
and K ¼ 4, the numbers of RRG-based abstract subgoals
were 9 and 24 respectively. In contrast, the number of sub-
goals for the SHRL algorithm was 161. FuN [18] and
HIRO [19] used the output space of the neural network as
the subgoal space, resulting in a continuous subgoal space.
As the number of RRG-AS options was less than that of sub-
goal options, it was easier to optimize the policy over RRG-
AS options than to optimize the policy over subgoal options.
Thus, it was probably easier to find a good solution with our
algorithm than the baselines.

The Impact of Different N1 Values. We empirically studied
how the number of metric learning episodes N1 impacts the
overall performance of RRG-RL. As shown in Figs. 13a
and 13b, RRG-RL suffered performance degradation
when N1 was small but maintained high performance
when N1 was comparatively large. The possible reason was
as follows. A small N1 led to insufficient training samples
that weakened the generalization ability of the geodesic-
metric network, but a largeN1 could provide sufficient sam-
ples for the geodesic-metric network. As N1 increased, the
marginal improvement from extra training samples got
smaller, so the RRG-RL performance converged.

According to the above analysis, we propose a heuristic
way to adjust N1 automatically. We used the geodesic-met-
ric network to predict label zij of state pair ðsi; sjÞ (the true
label was given according to Eq. (23)) through judging
whether kCwðsiÞ �CwðsjÞk was smaller than x. Before
training the geodesic-metric network at each episode, we
recorded the prediction accuracy for labels of state pairs
from the new trajectory sampled from the environment.
This accuracy reflected the geodesic-metric network’s (gen-
eralization) capability to some degree. We terminated the
metric learning phase when the prediction accuracy con-
verged at a value within an error range of 0.5 percent during
the last 50 episodes. More details can be found in

Fig. 11. The abstract reinforcement learning architecture for the 2D
Minecraft environment. This was used to learn the agent policy in the
second phase of RRG-RL.

Fig. 12. (a) Visualization of abstract states for K ¼ 4. (b) Visualization of
abstract states for K ¼ 2. One colored block represents an abstract
state.

TABLE 2
Average Rewards�std for Two 2D Minecraft Tasks

States Subgoals Key-searchingKey-making

Option-Critic [14] 161 - 0�0 0�0
FuN [18] 161 Continuous 0�0 0�0
HIRO [19] 161 Continuous 0�0 0�0
SHRL [6] 161 161 21.0�12.2 10.5 � 15.3
RRG-RL (K=2) 24 24 40.6 � 16.7 27.9�8.7
RRG-RL (K=4) 9 9 54.9�5.7 35.6�10.3

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5585

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

Supplementary Materials, available online. Figs. 13a
and 13b demonstrated that the performance of automatic
N1 was similar to that of large N1 (i.e., 800 and 1000). How-
ever, we believe that a better approach is to adjust N1

according to the sampling sufficiency of the state space,
which we leave for future work.

6.4 Results in Doom

Task. To evaluate the performance of our algorithm in a
complex environment, we considered the key-searching
task in Doom. As illustrated in Fig. 7, the task required the
agent to pick up the key and then reach the goal. The agent
started at a fixed position and orientation. It received a
reward of 100 if it first obtained the key and then reached
the goal point. However, it obtained a reward of only 20 if it
arrived at the goal point without the key. A reward of 5 was
provided if only the key was obtained. The agent had to
accomplish the task within 1000 steps. Similar tasks in 2D
environments (e.g., the Montezuma game) have been
solved [6]. However, such task has not been accomplished
in a first-person 3D environment without any task-specific
priors.

Baseline. SHRL [6] without task-specific information and
HIRO [19] have not been reported to solve RL problems in a
high-dimensional state space. Thus, we did not evaluate the
two algorithms in Doom. Vezhnevets et al. used FuN [18] to
solve complex tasks in Montezuma, which is a game envi-
ronment with high-dimensional images. Pathak et al. [23]
proposed a curiosity-driven algorithm named intrinsic curi-
osity module (ICM) to solve tasks with spare rewards in the
Doom environment. Therefore, we chose these two algo-
rithms as baselines. We also compared our framework
against the well-known option-critic [14].

Implementation. We used repeated actions four times dur-
ing training in Doom, similar to Mnih et al. [1]. We trained
the algorithms with 50000 episodes, and any episode requir-
ing more than 1000 steps was terminated. We set the
discount g of each step to 0.995. The details for the baselines
were in Supplementary Materials, available online. Like the
Minecraft experiment, the RRG-RL algorithm for the Doom
environment had no access to any sample before the two-
phase training. In the first phase, the training of the geode-
sic-metric network took 1500 episodes (see details in Sec-
tion 6.2). Like the 2D Minecraft, after the state space was
compressed using Algorithm 1, we took each abstract state
as an abstract subgoal of RRG-AS option. All RRG-AS
options were available for each state. We assigned a replay
memory to each RRG-AS option. We represented the
abstract agent with the tabular method and RRG-AS options
with CNNs, as shown in Fig. 15. Q-value function Qu for
each RRG-AS option was represented by a convolution
architecture that had a first layer with 32 8� 8 filters of
stride 4, a second layer with 128 6� 6 filters of stride 2, and
a third layer with 64 5� 5 filters of stride 1. We then added
two fully connected layers (with sizes 256 and 7). The first
fully connected layer was followed by a ReLU activation
function. We implemented the RRG-AS option policy using
a greedy policy with exploration probability 1 annealing
to 0.1 as the learning proceeds. We used a tabulation (or a
matrix) # to represent QA

and implemented the policy over
RRG-AS options using a greedy policy with exploration
probability 1 annealing to 0.0001 as the learning proceeds.
Other parameters are provided in Supplementary Materials,
available online.

Results. We illustrated the four algorithms’ converged
trajectories in Fig. 14a and reward curves in Fig. 14b. The
optimal path for reaching the goal point from the starting
point required approximately 36 steps. However, the opti-
mal path for finding the key and then reaching the goal
required approximately 115 steps, which was three times
of 36 steps. The three baselines just reached the goal without
finding the key. Thus, their discounted cumulative rewards
were around 20� g36
 16.

Due to the long-term structural exploration, the agent
rarely accomplished the key-searching task in the training
process. The key-searching task was difficult to solve with-
out efficient long-term exploration. Efficient exploration
techniques, such as curiosity-based methods [23], can

Fig. 13. Average rewards�std of different N1 values for (a) the key-
searching task and (b) the key-making task.

Fig. 14. (a) The learned trajectories of the four algorithms. (b) The reward curves of the four algorithms for the key-finding task in Doom.

5586 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

explore more unseen states but cannot explore the long-
term structural actions. Although FuN can explore long-
term actions with subgoals, optimizing the policy over sub-
goals becomes very difficult due to the large-scale state
space. Thus, FuN failed to accomplish the key-searching
task.

Compared with the baselines, our state-temporal com-
pression (i.e., RRG-based abstract states and RRG-AS
options) enabled the agent to explore the environment in
coarse-grained state space and larger span of time steps.
This exploration was efficient for the key-searching task.
Our algorithm could accomplish the key-searching task and
achieved a reward of 100� g115
 58. However, RRG-RL
had a shortcoming: it required some warming-up episodes
to start. In the beginning, RRG-AS option policies were inef-
fective, leading to a difficult learning problem for the policy
over RRG-AS options. Consequently, the learning curve
stayed at low values in early episodes, as shown in Fig. 14b.
When RRG-AS options were learned relatively well, the
learning curve for RRG-RL increased rapidly.

7 CONCLUSIONS AND DISCUSSIONS

Many difficulties exist in RL algorithms, such as high sam-
ple complexity, inefficient exploration, unstable training,
etc. Compression is an efficient way to tackle these difficul-
ties in RL algorithms [59]. Human brains also make deci-
sions in an abstract way [60]. Although compression in state
spaces and times has been studied for many years [9], [10],
[12], [18], [19], it remains a persistent problem to perform
practical state-temporal compression with theoretical guar-
antees. In this work, we propose a new metric RRG, which
can be learned by a neural network, to perform state-tempo-
ral compression in RL. Furthermore, we develop a system-
atic and theoretical analysis for this metric. Our theory and
algorithm make a step towards practical and optimality-
preserving state-temporal compression in RL. Although our
method addresses several open issues for compression in
RLs, the following five questions remain unanswered.

First, can Compression in an SMDP Approximately Preserve
Optimality for an MDP?We have proved that ð�; dÞ-compres-
sion based on three metrics approximately preserves opti-
mality of an SMDP. Nevertheless, the optimal policy for an

SMDP may not equal that for an MDP because the former
relies on options. Suppose the set of policies induced by
subgoal options covers (or approximately covers) the set of
policies for an MDP; then, the optimal solution for an
SMDP equals (or approximately equals) that for an MDP.
Thus, one promising approach for preserving optimality of
an MDP is to parameterize and optimize a subgoal space to
enable the set of policies induced by subgoal options to
cover the whole set of policies for an MDP.

Second, can the RRG-RL Algorithm be Applied to Any RL
Tasks? The RRG-RL algorithm depends on subgoals.
Although subgoals have been widely used in RL [6], [18],
[48], [61], it remains unknown whether subgoal options are
feasible for any RL tasks. Essentially, the first and second
questions are the same. If subgoal options guarantee (or
approximately guarantee) optimality for an MDP, the RRG-
RL algorithm can be applied to any RL task. Consequently,
the theoretical relation between an SMDP and an MDP is
crucial for future studies.

Third, can State Compression be Applied in Nonstationary
Environments? Existing compression approaches including
ours make an implicit assumption that the environment is
stationary. When an environment is dynamic over time,
performing state compression is very challenging. We will
consider the dynamic construction of state compression in
future studies.

Fourth, can the Degree of State Compression be Automatically
Adjusted? K represents the degree of state space reduction
and is predefined in this work. Experimental results have
shown that K is an important factor for the performance of
RRG-RL. Thus, the automatic setting of K merits study. The
reason for fixing K is that current metric learning approach
requires a fixed K. If the value of K is variable in geodesic
metric learning, K can be automatically adjusted for the
RRG metric-based compression.

Fifth, do More Efficient Methods Exist to Collect Data for Met-
ric Learning? Although it is common to collect data with a
uniform random policy for learning state representations or
abstractions [35], [40], [62], [63], the uniform random policy
may lead to insufficient exploration especially for realistic
and big environments [62], [63]. To tackle this problem, we
believe that there are two approaches worth studying in the
future. The first approach is to collect data using a policy
that can explore the entire state space efficiently. For exam-
ple, the studies [62], [63] attempt to leverage the deep Q-net-
work [1] to collect data such that training data can cover all
regions of the state space. Also, one can adopt more efficient
exploration policies, such as the curiosity-based exploration
policy [23]. The second approach is to use a finite set of poli-
cies to collect data. If these policies are diverse enough, they
can sample data from all regions of the state space. Note
that the agent in an SMDP typically has some diverse option
policies. We can use these policies to collect data for learn-
ing the geodesic-metric network. It is desirable to incorpo-
rate the phase of agent policy learning into the phase of
metric learning.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61671266, Grant

Fig. 15. The abstract reinforcement learning architecture for the Doom
environment. It was used to learn the agent policy in the second phase
of the RRG-RL algorithm.

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5587

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

61836004, Grant U19B2034, and Grant 61836014 and in part
by the Tsinghua-Guoqiang research program under Grant
2019GQG0006.

REFERENCES

[1] V. Mnih et al. “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, 2015.

[2] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Ja�skowski,
“ViZDoom: A doom-based AI research platform for visual rein-
forcement learning,” in Proc. IEEE Conf. Comput. Intell. Games,
2016, pp. 1–8.

[3] S. M. Kakade, “On the sample complexity of reinforcement
learning,” PhD dissertation, Gatsby Comput. Neurosci. Unit,
Univ. College London, London, U.K., 2003.

[4] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning
in finite MDPs: PAC analysis,” J. Mach. Learn. Res., vol. 10,
pp. 2413–2444, 2009.

[5] R. I. Brafman and M. Tennenholtz, “R-MAX-A general polyno-
mial time algorithm for near-optimal reinforcement learning,”
J. Mach. Learn. Res., vol. 3, no. 2, pp. 213–231, 2003.

[6] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum,
“Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2016, pp. 3675–3683.

[7] J. A. Arjona-Medina , M. Gillhofer, M. Widrich, T. Unterthiner,
J. Brandstetter, and S. Hochreiter, “RUDDER: Return decomposi-
tion for delayed rewards,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2019, pp. 13 544–13 555.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

[9] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of
state abstraction for MDPs,” in Proc. Int. Symp. Artif. Intell. Math.,
2006, pp. 531–539.

[10] D. Abel, D. Arumugam, L. Lehnert, and M. L. Littman, “State
abstractions for lifelong reinforcement learning,” in Proc. 35th Int.
Conf. Mach. Learn., 2018, pp. 10–19.

[11] B. Ravindran, “An algebraic approach to abstraction in reinforce-
ment learning,” PhD dissertation, Dept. Comput. Sci., Univ. Mas-
sachusetts at Amherst, Amherst, MA, USA, 2004.

[12] B. Ravindran and A. G. Barto, “SMDP homomorphisms: An
algebraic approach to abstraction in semi-Markov decision
processes,” in Proc. 12th Int. Joint Conf. Artif. Intell., 2003,
pp. 1011–1016.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning,” Artif. Intell., vol. 112, no. 1/2, pp. 181–211, 1999.

[14] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic
architecture,” in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 1726–1734.

[15] Y. Jiang, S. Gu, K. Murphy, and C. Finn, “Language as an abstrac-
tion for hierarchical deep reinforcement learning,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2019, pp. 9414–9426.

[16] B. Ravindran and A. G. Barto, “Approximate homomorphisms:
A framework for non-exact minimization in Markov decision
processes,” in Proc. 5th Int. Conf. Knowl. Based Comput. Syst., 2004.

[17] A. A. Taı̈ga, A. Courville, and M. G. Bellemare, “Approximate
exploration through state abstraction,” 2018, arXiv: 1808.09819.

[18] A. S. Vezhnevets et al.“Feudal networks for hierarchical rein-
forcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 3540–3549.

[19] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchi-
cal reinforcement learning,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2018, pp. 3303–3313.

[20] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Mar-
kov decision processes,” in Proc. 20th Conf. Uncertainty Artif.
Intell., 2004, pp. 162–169.

[21] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforce-
ment learning with policy sketches,” in Proc. 34th Int. Conf. Mach.
Learn., 2017, pp. 166–175.

[22] J. Oh, S. Singh, H. Lee, and P. Kohli, “Zero-shot task generaliza-
tion with multi-task deep reinforcement learning,” in Proc. 34th
Int. Conf. Mach. Learn., 2017, pp. 2661–2670.

[23] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-
driven exploration by self-supervised prediction,” in Proc. 34th
Int. Conf. Mach. Learn., 2017, pp. 2778–2787.

[24] T. G. Dietterich, “Hierarchical reinforcement learning with the
MAXQ value function decomposition,” J. Artif. Intell. Res., vol. 13,
pp. 227–303, 2000.

[25] P. S. Castro, “On planning, prediction and knowledge transfer in
fully and partially observable Markov decision processes,” PhD
dissertation, School Comput. Sci., McGill Univ., 2011.

[26] P. S. Castro and D. Precup, “Automatic construction of temporally
extended actions for MDPs using bisimulation metrics,” in Proc.
Eur. Workshop Reinforcement Learn., 2011, pp. 140–152.

[27] P. S. Castro and D. Precup, “Using bisimulation for policy transfer
in MDPs,” in Proc. AAAI Conf. Artif. Intell., 2010, pp. 1065–1070.

[28] N. Ferns, P. Panangaden, and D. Precup, “Metrics for Markov
decision processes with infinite state spaces,” in Proc. 21th Conf.
Uncertainty Artif. Intell., 2005, pp. 201–208.

[29] A. L. Gibbs and F. E. Su, “On choosing and bounding probability
metrics,” Int. Statist. Rev., vol. 70, no. 3, pp. 419–435, 2002.

[30] P. S. Castro, “Scalable methods for computing state similarity in
deterministic Markov decision processes,” in Proc. AAAI Conf.
Artif. Intell., 2020, pp. 10069–10076.

[31] J. J. Taylor, D. Precup, and P. Panangaden, “Bounding perfor-
mance loss in approximate MDP homomorphisms,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2008, pp. 1649–1656.

[32] D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup,
and M. L. Littman, “Value preserving state-action abstractions,” in
Proc. 23rd Int. Conf. Artif. Intell. Statist., 2020, pp. 1639–1650.

[33] S. Mannor, I. Menache, A. Hoze, and U. Klein, “Dynamic abstrac-
tion in reinforcement learning via clustering,” in Proc. 21st Int.
Conf. Mach. Learn., 2004, pp. 560–567.

[34] T. G. Dietterich, “State abstraction in MAXQ hierarchical rein-
forcement learning,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2000, pp. 994–1000.

[35] M. C. Machado, M. G. Bellemare, and M. Bowling, “A Laplacian
framework for option discovery in reinforcement learning,”
in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 2295–2304.

[36] S. Tiwari and P. S. Thomas, “Natural option critic,” in Proc. 33rd
AAAI Conf. Artif. Intell., 2019, pp. 5175–5182.

[37] D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near optimal
behavior via approximate state abstraction,” in Proc. 33rd Int.
Conf. Mach. Learn., 2016, pp. 2915–2923.

[38] R. Ortner, “Pseudometrics for state aggregation in average reward
Markov decision processes,” in Proc. Int. Conf. Algorithmic Learn.
Theory, 2007, pp. 373–387.

[39] N. Jiang, A. Kulesza, and S. Singh, “Abstraction selection in
model-based reinforcement learning,” in Proc. 32nd Int. Conf.
Mach. Learn., 2015, pp. 179–188.

[40] S. Mahadevan and M. Maggioni, “Proto-value functions: A Lapla-
cian framework for learning representation and control in Markov
decision processes,” J. Mach. Learn. Res., vol. 8, pp. 2169–2231,
2007.

[41] J. Bouttier, P. Di Francesco , and E. Guitter, “Geodesic distance in
planar graphs,” Nucl. Phys. B, vol. 663, no. 3, pp. 535–567, 2003.

[42] P. Dayan, “Improving generalization for temporal difference
learning: The successor representation,” Neural Comput., vol. 5,
no. 4, pp. 613–624, 1993.

[43] A. Barreto et al.“Successor features for transfer in reinforcement
learning,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4055–4065.

[44] T. Verechtchaguina, I. Sokolov, and L. Schimansky-Geier , “First
passage time densities in resonate-and-fire models,” Phys. Rev.
E Statal Nonlinear Soft Matter Phys., vol. 73, no. 3, 2006, Art. no.
031108.

[45] T. G. Mattos, C. Meja-Monasterio, R. Metzler, and G. Oshanin,
“First passages in bounded domains: When is the mean first pas-
sage time meaningful?,” Phys. Rev. E Statal Nonlinear Soft Matter
Phys., vol. 86, 2012, Art. no. 031143.

[46] L. Yang and R. Jin, “Distance metric learning: A comprehensive
survey,” Dept. Comput. Sci. Eng., Michigan State Univ., Tech.
Rep., 2006.

[47] R. Hadsell, S. Chopra, and Y. LeCun , “Dimensionality reduction
by learning an invariant mapping,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2006, pp. 1735–1742.

[48] O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-optimal represen-
tation learning for hierarchical reinforcement learning,” in Proc.
Int. Conf. Learn. Representations, 2019.

[49] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey,” J. Mach. Learn. Res., vol. 10, no. 1,
pp. 1633–1685, 2009.

5588 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

[50] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric
topological memory for navigation,” in Proc. Int. Conf. Learn. Rep-
resentations, 2018.

[51] N. Savinov et al., “Episodic curiosity through reachability,” in
Proc. Int. Conf. Learn. Representations, 2019.

[52] S. K. Bhatia, “Adaptive k-means clustering,” in Proc. Int. Florida
Artif. Intell. Res. Soc. Conf., 2004, pp. 695–699.

[53] G. D. Konidaris, L. P. Kaelbling, and T. Lozano-Perez , “Symbol
acquisition for probabilistic high-level planning,” in Proc. 24th Int.
Joint Conf. Artif. Intell., 2015, pp. 3619–3627.

[54] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez , “From skills
to symbols: Learning symbolic representations for abstract high-
level planning,” J. Artif. Intell. Res., vol. 61, pp. 215–289, 2018.

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980.

[56] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and
M. Campbell, “Eigenoption discovery through the deep successor
representation,” in Proc. Int. Conf. Learn. Representations, 2018.

[57] G. Brockman et al. “OpenAI gym,” 2016, arXiv:1606.01540.
[58] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference

models: Model-free deep RL for model-based control,” in Proc.
Int. Conf. Learn. Representations, 2018.

[59] G. Konidaris, “On the necessity of abstraction,” Current Opinion
Behav. Sci., vol. 29, pp. 1–7, 2019.

[60] M. M. Botvinick, “Hierarchical reinforcement learning and deci-
sion making,” Current Opinion Neurobiol., vol. 22, no. 6, pp. 956–
962, 2012.

[61] J. Rafati and D. Noelle, “Unsupervised subgoal discovery method
for learning hierarchical representations,” in Proc. 7th Int. Conf.
Learn. Representations, 2019.

[62] J. Mugan and B. Kuipers, “Autonomous learning of high-level
states and actions in continuous environments,” IEEE Trans.
Auton. Mental Develop., vol. 4, no. 1, pp. 70–86, Mar. 2012.

[63] A. Srinivas, R. Krishnamurthy, P. Kumar, and B. Ravindran,
“Option discovery in hierarchical reinforcement learning using
spatio-temporal clustering,” 2020, arXiv:1605.05359.

Shangqi Guo received the BS degree in mathe-
matics and physics basic science from the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 2015. He is currently
working toward the PhD degree in the Depart-
ment of Automation, Tsinghua University, Beijing,
China. His current research interests include
inference in artificial intelligence, brain-inspired
computing, computational neuroscience, and
reinforcement learning.

Qi Yan received the BS degree from the Depart-
ment of Automation, Tsinghua University, Beijing,
China, in 2015, where he is currently working
toward the PhD degree. His current research
interests include computer vision, artificial intelli-
gence, and reinforcement learning.

Xin Su received the BS degree inmathematics and
physics basic science from the Department of
Physics, Tsinghua University, Beijing, China, in
2016. He is currently working toward the PhD
degree in the Department of Automation, Tsinghua
University, Beijing, China. His current research
interests include lifelong learning, reinforcement
learning, and general machine learning techniques.

Xiaolin Hu (Senior Member, IEEE) received BE
and ME degrees from the Wuhan University of
Technology, Wuhan, China, in 2001 and 2004,
respectively, both in automotive engineering and
the PhD degree in automation and computer-
aided engineering from The Chinese University of
Hong Kong, Hong Kong, in 2007. He is currently
an associate professor at the Department of
Computer Science and Technology, Tsinghua
University, Beijing, China. His current research
interests include deep learning and computa-

tional neuroscience. At present, he is an associate editor of the IEEE
Transactions on Image Processing. Previously, he was an associate edi-
tor of the IEEE Transactions on Neural Networks and Learning Systems.

Feng Chen (Member, IEEE) received the BS and
MS degrees in automation from Saint-Petersburg
Polytechnic University, Saint Petersburg, Russia,
in 1994 and 1996, respectively, and the PhD
degree from the Automation Department, Tsing-
hua University, Beijing, China, in 2000. He is cur-
rently a professor with Tsinghua University. His
current research interests include computer
vision, brain-inspired computing, and inference in
graphical models.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GUO ETAL.: STATE-TEMPORALCOMPRESSION IN REINFORCEMENT LEARNING WITH THE REWARD-RESTRICTED GEODESIC METRIC 5589

Authorized licensed use limited to: Tsinghua University. Downloaded on September 23,2022 at 00:47:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

