
0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

State-Temporal Compression in Reinforcement
Learning with the Reward-Restricted Geodesic

Metric
Shangqi Guo, Qi Yan, Xin Su, Xiaolin Hu, Senior Member, IEEE , and Feng Chen, Member, IEEE

Abstract—It is difficult to solve complex tasks that involve large state spaces and long-term decision processes by reinforcement
learning (RL) algorithms. A common and promising method to address this challenge is to compress a large RL problem into a small
one. Towards this goal, the compression should be state-temporal and optimality-preserving (i.e., the optimal policy of the compressed
problem should correspond to that of the uncompressed problem). In this paper, we propose a reward-restricted geodesic (RRG)
metric, which can be learned by a neural network, to perform state-temporal compression in RL. We prove that compression based on
the RRG metric is approximately optimality-preserving for the raw RL problem endowed with temporally abstract actions. With this
compression, we design an RRG metric-based reinforcement learning (RRG-RL) algorithm to solve complex tasks. Experiments in
both discrete (2D Minecraft) and continuous (Doom) environments demonstrated the superiority of our method over existing RL
approaches.

Index Terms—Semi-Markov decision process (SMDP), reward-restricted geodesic (RRG) metric, option, state compression,
state-temporal compression, reinforcement learning (RL).

F

1 INTRODUCTION

R EINFORCEMENT learning (RL) has made significant
progress in various tasks [1], [2]. However, when solv-

ing complex tasks involving large state spaces and long-
term decision processes, traditional RL algorithms may
encounter difficulties. First, large state spaces lead to high
sample complexity [3], [4], [5] which represents the number
of samples required to obtain a near-optimal solution with
high probability. Second, long-term decision processes make
exploration and temporal credit assignment quite ineffi-
cient [6], [7]. For instance, some tasks in Doom (a first-
person video game) reward the agent only when it accom-
plishes a series of complex behaviors, such as finding a key
and then opening a door in a large room. The reason for the
two difficulties is that an RL problem is typically formalized
as a fine-grained Markov decision process (MDP) in which
the agent is assumed to execute one action in a raw state at
each time step [8]. One approach to tackling these difficulties
is to compress a large and fine-grained MDP into a small
and coarse-grained one [9], [10], [11], [12].

• S. Guo, Q. Yan, X. Su, and F. Chen are with the Department of
Automation, Tsinghua University, Beijing 100086, China, with the
Beijing Innovation Center for Future Chip, Beijing 100086, China,
and with the LSBDPA Beijing Key Laboratory, Beijing 100084, China
(e-mail: gsq15@mails.tsinghua.edu.cn; q-yan15@mails.tsinghua.edu.cn;
suxin16@mails.tsinghua.edu.cn; chenfeng@mail.tsinghua.edu.cn).

• X. Hu is with the Department of Computer Science and Technology,
Institute for Artificial Intelligence, Beijing National Research Center for
Information Science and Technology, State Key Laboratory of Intelligent
Technology and Systems, Tsinghua University, Beijing 100084, China (e-
mail: xlhu@mail.tsinghua.edu.cn).

This work was supported in part by the National Natural Science Foundation
of China under Grant 61671266, Grant 61836004, Grant U19B2034, and
Grant 61836014 and in part by the Tsinghua-Guoqiang research program
under Grant 2019GQG0006. Corresponding authors: Xiaolin Hu and
Feng Chen.

Many works use compression in RL and they fall into
three categories. The first category performs compression
in the time domain with temporally abstract actions. Each
temporally abstract action is associated with a policy over
primitive actions and enables the agent to make decisions
at a long time span instead of at a single time step [13].
RL with temporally abstract actions has been applied to
solve tasks with long-term sparse rewards [6], [14], [15].
However, it remains a challenging problem to optimize
the policy over temporally abstract actions for large-scale
state spaces because the space size of temporally abstract
actions scales with the state space. The second category per-
forms compression in the state space by aggregating similar
states [16], [17]. Nevertheless, state compression does not
tackle the difficulty induced by long-term decision processes
and sparse rewards. The third category performs compres-
sion in both the state space and the time domain [12], [18],
[19], i.e., state-temporal compression. These methods, how-
ever, are either impractical or not optimality-preserving.
Thus, state-temporal compression is still an open problem.

Since an MDP with temporally abstract actions is formu-
lated as a semi-MDP [13, SMDP], state-temporal compres-
sion in an MDP can be transformed into state compression
in an SMDP. The core of state compression is to measure
the similarity between states [9]. Therefore, state-temporal
compression can be carried out by measuring a state metric
in an SMDP. Ferns et al. [20] proposed a bisimulation metric
to measure the similarity between states in an MDP. They
proved that the compression based on the bisimulation
metric approximately preserves the optimality of the un-
compressed RL problem. This metric can be extended to an
SMDP by incorporating multi-step transition models and
rewards, but it is computationally difficult.

In this paper, we present a novel geodesic metric to

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

measure the similarity between states in an SMDP. It is
defined as the average minimum number of steps required
by an agent to transition from one state to another. One
of its advantages is that it can be learned by a deep neural
network efficiently. We prove that compression based on the
geodesic metric induces an approximately optimal policy of
the uncompressed SMDP. To improve the accuracy of the
approximation, we add a reward similarity restriction and
name it the reward-restricted geodesic (RRG) metric. With
compression based on the RRG metric, we design an RRG
metric-based RL (RRG-RL) algorithm. Our experiments on
complex tasks, where only specific complex sequences of
actions were rewarded, demonstrated the superiority of our
framework over existing RL algorithms. In particular, RRG-
RL successfully solved a complex task in the Doom envi-
ronment that cannot be solved by existing RL algorithms. In
summary, our contributions are as follows:

• We propose an RRG metric to measure the similarity
between states in an SMDP and prove that compres-
sion based on this metric induces an approximately
optimal policy of the uncompressed SMDP.

• We propose a neural network to learn the RRG
metric.

• We design an RRG metric-based RL (RRG-RL) algo-
rithm to successfully solve some complex tasks.

The rest of our paper is organized as follows. In Sec-
tion 2, we discuss the background and related work. In Sec-
tion 3, we introduce the mathematical description of state-
temporal compression and the state-temporal compression-
based RL framework. In Section 4, we propose several
metrics to perform state-temporal compression. In Section 5,
we introduce an RRG-RL algorithm. In Section 6, we present
the results of our algorithm in two environments. Finally,
Section 7 concludes and discusses the paper.

2 BACKGROUND AND RELATED WORK

An RL problem is typically formalized as an MDP M,
which is defined as a tuple 〈S,A, p, r, γ〉 consisting of a
state space S, an action set A, one-step transition proba-
bilities p(s′ | s, a), one-step rewards r(s, a) = E[rt+1 | st =
s, at = a], and a discount factor γ ∈ [0, 1]. The objec-
tive of RL is to maximize the expected cumulative re-
ward E[

∑∞
t=0 γ

trt+1] by optimizing a policy πA : S × A →
[0, 1] over actions.

Some difficulties exist in an MDP. First, the sample com-
plexity of RL algorithms scales with the state space and the
action space [3], [4], [5]. Second, long-term credit assignment
remains a major challenge, especially in environments with
sparse rewards, such as complex tasks in Minecraft [21],
[22] and Doom [18], [23]. These difficulties lie in the fact
that MDPs are fine-grained decision-making processes [9],
[10], while real-life tasks involve large state spaces and long-
term decision-making processes. One way to tackle these
difficulties is to compress a large and fine-grained MDP
into a small and coarse-grained one. Existing compression
methods fall into three categories: temporal compression,
state compression, and state-temporal compression.

2.1 Temporal Compression

Many researchers have used temporally abstract actions to
solve complex tasks, which are difficult to solve by flat
policies [6], [18]. There are many variants of temporally ab-
stract actions, such as options [13], skills [22], subtasks [24],
and sub-policies [21]. We adopt the term “option”. In an
MDP endowed with options, an agent is assumed to output
an option associated with a policy over ground states and
actions [13, 25]. The agent makes decisions over options at
a larger span of time steps instead of a single time steps,
which can be taken as temporal compression.

An option o is defined as a tuple (Io, ωo, βo) consisting
of three components: an initiation set Io ⊆ S, an option
policy ωo : S × A → [0, 1], and a termination func-
tion βo : S → [0, 1]. Option o is available in state s if and
only if s ∈ Io. When option o is selected, ωo produces actions
until o terminates at state s according to βo (s). We assume
that all options terminate in finite time with probability 1.
Particularly, we introduce one important type of options—
the subgoal option [6], [12], [13], [19]. It is defined as a
tuple g , (Ig, ωg, βg) along with a subgoal state sg ∈ S,
where Ig is a set of initial states ensuring that option g can
reach sg ; ωg : S × A → [0, 1] is a subgoal option policy
(that is to reach sg as quickly as possible); βg : S → [0, 1]
is a termination function (that is to terminate g once sg is
reached).

Let O(s) be the set of available options for each state s ∈
S and O , ∪s∈SO(s) be the set of all options. An MDP
endowed with O is modeled by an SMDP [13] defined as a
tuple N = 〈S,O, P,R, γ〉, where P : S × O × S → [0, 1]
and R : S × O → R denote multi-step transition models
and rewards for options, respectively. R and P indicate the
outcomes of an option at many different time steps instead
of one time step, and are defined as [13]:

P (s′ | s, o) ,
∞∑
k=1

γkP (s′, k | s, o) , (1)

R (s, o) , E

[
k−1∑
i=0

γirt+1+i|st = s, ot = o

]
, (2)

where t denotes the time at which o is initialized; k de-
notes a random number of steps needed for executing
option o; P (s′, k | s, o) denotes the probability that option o
terminates at s′ after k time steps. As the multi-step tran-
sition model incorporates a discount factor, P (s′ | s, o) is a
sub-probability (i.e.,

∑
s′∈S P (s′ | s, o) < 1) [25], [26], [27].

The SMDP objective is to optimize a policy π : S×O → [0, 1]
over options to maximize the value function defined as [13]:

Vπ (s) =
∑

o∈O(s)

π (o | s)
(
R (s, o) +

∑
s′

P (s′ | s, o)Vπ (s′)

)
.

(3)
The option framework is a hierarchical reinforcement

learning (HRL) framework because it consists of two poli-
cies: policy π(o | s) over options and option policy ωo(a | s)
over actions. This framework aims at solving tasks with
long-term sparse rewards but does not reduce the complex-
ity of state spaces. Since the option policy is in terms of
primitive states and actions, the space of option policies
is vast when state space S is very large, which makes the

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

option framework difficult to optimize. Thus, compressing
the state space in an SMDP is important.

2.2 State Compression

The core of state compression is to aggregate similar states
into an abstract state. State compression can be modeled as
a function φ : S → X mapping from a state space S to
an abstract state space X , which converts an MDP M =
〈S,A, p, r, γ〉 to an abstract MDP Mφ = 〈X,A, pφ, rφ, γ〉.
Let S be the power set of S and φ−1 : X → S be the inverse
map of φ; then, rφ (x, a) and pφ (x′ |x, a) are respectively
defined as [9]:

rφ (x, a) ,
∑

s∈φ−1(x)

w (s |x) r (s, a) , (4)

pφ (x′ |x, a) ,
∑

s′∈φ−1(x′)

∑
s∈φ−1(x)

w (s |x) p (s′ | s, a) , (5)

where w (s |x) measures the contribution of state s to
abstract state x and satisfies the normalization condition∑
s∈φ−1(x) w (s |x) = 1. This constraint ensures that Mφ

can be studied in a Markovian way [9].
Ferns et al. [20], [28] proposed the bisimulation metric to

measure the similarity between states. Given MDP M, for
any s1, s2 ∈ S, the bisimulation metric is defined as [20]:

dB (s1, s2) , max
a∈A
{cr |r (s1, a)− r (s1, a)|

+cpdp (p (· | s1, a) , p (· | s2, a))} , (6)

where cr and cp are two positive constants; dp is a probabil-
ity metric. cr and cp are the weights of the distance between
rewards and the distance between transition probabilities,
respectively [20]. There are many probability metrics [29];
two of the most important ones are the Kantorovich metric
and the total variation metric [20]. Ferns et al. [20] proved
that dB induces a bisimulation metric when dp is the Kan-
torovich metric.1 Evidently, the bisimulation metric satisfies
the non-negativity, symmetry, and triangle inequality condi-
tions but not the identity condition (dB (s1, s2) = 0 does not
entail s1 = s2). Therefore, dB is a pseudo-metric.

Ferns et al. [20] proved that compression based on the
bisimulation metric approximately preserves the optimal
policy of the uncompressed MDP. Also, bisimulation metrics
can be used to construct options automatically [26]. Cas-
tro [30] proposed a scalable method for computing bisimu-
lation metrics with a neural network in a deterministic MDP.

There also exist other state compression methods. Some
researchers have proposed approximate MDP homomor-
phisms which aggregate states with similar one-step tran-
sition probabilities and rewards into an abstract state [12],
[16], [17]. Taylor et al. [31] proposed a lax version of
bisimulation metrics to bridge approximate MDP homomor-
phisms and bisimulation metric-based state compressions.
However, state compression in MDPs does not consider
temporally abstract actions.

1. If dB (s1, s2) = 0 is a necessary and sufficient condition for s1 to be
bisimilar to s2, dB is a bisimulation metric [20], [26], [27]. When dp is the
total variation metric, dB (s1, s2) = 0 is a sufficient but not necessary
condition for s1 to be bisimilar to s2, and thus dB is not a bisimulation
metric.

2.3 State-Temporal Compression
Abel et al. [32] presented four state-abstraction-option
classes that give rise to suboptimality bounds relative to
the environmental MDP, but they did not focus on state
similarity measurement. Ravindran and Barto [12] pro-
posed an SMDP homomorphism that aggregates only the
states with identical multi-step transition models and re-
wards. Although this approach preserves the optimality
of the raw SMDP, few states are identical in an environ-
ment [10] and the SMDP homomorphism is computation-
ally intractable [11]. Castro and Precup [25], [27] extended
the bisimulation metric to an SMDP and introduced the
notion of option-bisimulation metric. However, this metric
is difficult to calculate because its computational cost scales
exponentially with the maximum number of steps required
for executing an option. Several studies proposed heuristic
compression approaches in the option framework [33], [34],
but they are challenging to be applied to complex and
continuous environments. Thus, these approaches are im-
practical in realistic scenarios.

Function approximation can be seen as a form of
state compression that maps the raw space to a lower-
dimensional space, which is learned by optimizing the RL
objective in an end-to-end manner. Some studies perform
both state and temporal compression through combining
neural networks and HRL, such as feudal HRL (and its
variants) [18], [19] and option-critic with neural networks
(and its variants) [14], [35], [36]. Two problems exist in
these algorithms. First, the function that applies dimension
reduction to the raw state space is learned through maximiz-
ing the expected cumulative reward. However, this could
be very difficult for tasks with sparse rewards. Second,
dimension reduction compresses the representation of states
but does not necessarily compress the number of states.
Consequently, the space of state representation may still
be large. It is also unclear whether and how the optimal
solution in the compressed state representation corresponds
to that in the raw space. In summary, how to perform prac-
tical and optimality-preserving state-temporal compression
is still an open question.

3 STATE-TEMPORAL COMPRESSION-BASED RL
FRAMEWORK

Since an MDP with options is formulated as an SMDP [13],
state-temporal compression in an MDP can be transformed
into state compression in an SMDP. State compression can
compress an SMDP into an abstract SMDP. Therefore, state-
temporal compression converts an MDP to an abstract
SMDP, as shown in Figure 1(a). Aggregating similar states
is more practical than aggregating only identical states
because few states are identical in environments [10], [16],
[37]. Therefore, state compression can be carried out by
measuring the similarity between states in an SMDP.

As shown in Figure 1(b), we introduce a state-temporal
compression-based RL framework that consists of three
modules: a state compression module, an option module,
and an abstract agent module. The state compression mod-
ule maps a raw state to an abstract state with function φ(s).
The abstract agent module receives an abstract state and
produces an option o according to policy πφ(o |x). The

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Temporal 
compression

MDP SMDP Abstract
SMDP

State
compression

State clustering 
with a metricOption

State-temporal 
Compression

(a)

𝑠 𝑎

Environment

𝑹𝒆𝒘𝒂𝒓𝒅Sate compression: 
𝜙 𝑠

Option:
𝜔+ 𝑎|𝑠 	

𝑥 𝑜Abstract agent: 
𝜋1	 𝑜|𝑥

𝑠

(b)

Fig. 1: (a) State-temporal compression. It converts an MDP to an abstract SMDP. (b) State-temporal compression-based RL
framework.

option module takes a raw state and produces an action
according to option policy ωo(a | s). As discussed above, the
core of the framework is to find an appropriate state metric
to measure the similarity between states in an SMDP.

We adopt the definition of metric-based state compres-
sion in an MDP [38]. Let d denote a metric and ε denote a
compression threshold. We introduce the definition of (ε, d)-
compression.

Definition 1. (ε, d)-compression is defined as a surjection φε,d :
S → X that satisfies:

d (s1, s2) ≤ ε,∀x ∈ X and s1, s2 ∈ φ−1
ε,d (x) , (7)

where X denotes an abstract state space and φ−1
ε,d (x) denotes the

inverse image of abstract state x.

(ε, d)-compression can be considered as ε-neighborhood
clustering that clusters the states if the metrics between them
are less than ε. It converts an SMDP N = 〈S,O, P,R, γ〉 to
an abstract SMDP Nφε,d =

〈
X,O, Pφε,d , Rφε,d , γ

〉
. Similar

to Eqs. (4) and (5), multi-step reward Rφε,d and transition
model Pφε,d in Nφε,d are respectively defined as

Rφε,d (x, o) ,
∑

s∈φ−1
ε,d(x)

w (s |x)R (s, o) , (8)

Pφε,d (x′ |x, o) ,
∑

s′∈φ−1
ε,d(x′)

∑
s∈φ−1

ε,d(x)

w (s |x)P (s′ | s, o) ,

(9)

where w (s |x) measures the contribution of state s to ab-
stract state x and must satisfy the normalization condi-
tion

∑
s∈φ−1

ε,d(x) w (s |x) = 1. If (ε, d)-compression approx-
imately guarantees the optimal policy of the raw SMDP, it
is approximately optimality-preserving state-temporal com-
pression. In the following sections, we discuss several met-
rics to make (ε, d)-compression approximately optimality-
preserving.

4 METRICS FOR STATE-TEMPORAL COMPRES-
SION

In this section, we propose several metrics to perform state
compression in an SMDP. The basic idea is to aggregate
states within a short distance (small metric) in an appro-
priate space such that the compressed SMDP in that space
approximately preserves the optimality of the raw SMDP.

4.1 Multi-Step Metric

As mentioned above, the core of state-temporal compression
is to measure the similarity between states in an SMDP.
Similar states in an SMDP should satisfy two conditions:
(1) the available option sets for similar states should be the
same; (2) the multi-step transition models and rewards for
similar states should be similar. We then introduce the multi-
step metric as follows.

Definition 2. For any s1, s2 ∈ S, the multi-step metric is
defined as:

dM (s1, s2) , max
o∈O(s1)∩O(s2)

{cR |R (s1, o)−R (s2, o)|+

cP dp (P (· | s1, o) , P (· | s2, o))}+ cHH [O(s1), O(s2)] ,
(10)

where cR, cP , and cH are positive constants. The func-
tion H[x, y] = 0 if x = y, and 1 otherwise. cH is a sufficiently
large constant such that dM(s1, s2) ≤ ε implies that O(s1)
equals O(s2).

We without loss of generality assume that intersection
O(s1)∩O(s2) is nonempty in Definition 2. One can easily ex-
tend the notion of multi-step metric to the situation, where
intersection O(s1) ∩ O(s2) is empty, by defining metric
value dM(s1, s2) as infinity. All our theories can be applied
to the extended definition because (ε, d)-compression only
aggregates states with metric values smaller than an ε�∞.
In the rest of the paper, we set cR = 1/(1 − γ) and cP = 1.
Same as the bisimulation metric, the multi-step metric is a
pseudometric: it satisfies the non-negativity, symmetry, and
triangle inequality conditions but not the identity condition.

There are two differences between the option-
bisimulation metric and the multi-step metric. First,
the option-bisimulation metric [25], [27] does not con-
tain H[O(s1), O(s2)] because the available option set for
each state is assumed to be the same. Second, the option-
bisimulation metric uses the Kantorovich metric as dp. By
contrast, we employ the total variation metric as dp because
it is easy to analyze.2 The choice of dp does not alter the
fact that calculating the multi-step metric is expensive. Its

2. The total variation metric is usually defined as half of the L1-norm
or the L1-norm of two probability distributions’ difference [29]. We
adopt the second definition: given two probability distributions µ(s)
and ν(s), the total variation metric TV (µ, ν) is defined as

∑
s∈S |µ(s)−

ν(s)|.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 1: Error bounds for different compression types. Some studies [17], [20], [37] assume the range of one-step rewards
to be [0, 1] while others [10], [16], [39] do not. We assume the range of one-step rewards to be [0, 1] in this table. Note that ε
with a subscript represents a compression threshold for the corresponding compression type in an MDP.

Compression type Measurement for two states Error bound complexity
State compression for an MDP

Model similarity [37] ∀a, x : |r(s1, a)− r(s2, a)| ≤ ε1, |
∑
s′∈φ−1(x)(p(s

′ | s1, a)− p(s′ | s2, a))| ≤ ε1 O(2ε1|S|γ/(1− γ)3)
Model similarity [17] — O(2ε1|X|γ/(1− γ)2)
Homomorphism [16] ∀a : |rφ(φ(s), a)− r(s, a)| ≤ ε2,

∑
x′∈X |pφ(x′ |φ(s), a)−

∑
s′∈φ−1(x′) p(s

′ | s, a)| ≤ ε2 O(γε2/(1− γ)2)
Homomorphism [39] — O(γε2/(1− γ)3)
Q-values [10] ∀a : |q∗(s1, a)− q∗(s2, a)| ≤ ε3 (q∗ denotes the optimal value function in an MDP) O(2ε3/(1− γ)2)
Q-values [10] ∀a : dq∗(s1, a)/ε4e = dq∗(s2, a)/ε4e (d·e denotes an inter function) O(2ε4/(1− γ)2)
Bisimulation metric [20] dB(s1, s2) ≤ ε5 O(2ε5/(1− γ))

State compression for an SMDP
Multi-step metric dM(s1, s2) ≤ ε O(2ε/(1− γ)2)
Geodesic metric dG(s1, s2) ≤ ε (∀ε ∈ [0, 1/(1− γ))) O(2δ(ε)/(1− γ)3)
RRG metric dRRG(s1, s2) ≤ ε(∀ε ∈ [0, 1/(1− γ))) O(2ε/(1− γ))

computational cost scales exponentially with the maximum
number of steps for executing an option since the multi-step
transition model and reward are the outcomes of an option
at many different steps.

Suppose two states have the same available option sets
and similar multi-step transition models and rewards. In
that case, the expected returns for the two states are similar
according to the Bellman equation (i.e., Eq. (3)) in an SMDP.
Therefore, (ε, dM)-compression can approximately preserve
the value function over options in an SMDP. Like previous
state compression studies [17], [20], [31], [37], we assume
without loss of generality that the value range of one-step
rewards is normalized to [0, 1] in the following theorems.

Let π̂φε,dM
(o |x) be the optimal policy for abstract

SMDP Nφε,dM
, π̂e

φε,dM
(o | s) , π̂φε,dM

(o |φε,dM (s)) be the
extended policy (not necessarily optimal) of π̂φε,dM

on
SMDP N , and π̂(o | s) be the optimal policy for SMDP N .
We have the following theoretical result.

Theorem 1. The policy π̂e
φε,dM

(o | s) induced by (ε, dM)-
compression approximates the optimal policy π̂ (o|s) for
SMDP N with an error bound of:

‖ Vπ̂ − Vπ̂e
φε,dM

‖∞≤ EV (ε, dM) , 2εe (H) , (11)

where e(H) =
1− γH

1− γ

(
1

cR
+

1

cP (1− γ)

)
and H denotes the

horizon of SMDP N (i.e., the maximum number of decisions that
the agent makes over options).

Proof. The proof is provided in Supplementary Materials.

In the rest of the paper, we call policy π̂e
φε,dM

the EV (ε, dM)-optimal policy. The complexity of error
bound EV (ε, dM) isO(2ε/(1−γ)2) when H is infinite. If RL
tasks are composed of several sequential sub-tasks (i.e., H
is small), EV (ε, dM) is scaled down by a factor of 1/(1− γ).
There exist a variety of state compression criteria in an MDP
that enable state compression to approximately preserve the
optimality of the uncompressed MDP. We summarize the
properties of some important compression types in Table 1.

Computational complexity. Let τ denote a state-action
trajectory and PT (τ | s, o) denote the distribution over tra-
jectories taken by option o at state s. As options are assumed
to terminate in finite time with probability 1, the maximum

length (denoted by Tmax) of trajectories is finite but can be
very large. We then rewrite Eqs. (1) and (2) as:

P (s′ | s, o) =
∑
τ∈Ts′

PT (τ | s, o) , (12)

R (s, o) =
∑
τ∈T

PT (τ | s, o)
Tmax−1∑
k=0

γkr (st+k, at+k) , (13)

where T represents the set of all trajectories; t is the time
at which option o is initialized; Ts′ represents the set of the
trajectories whose end states are s′. Substituting Eqs. (13)
and (12) into Eq. (10), one can find that the computation
of metric dM enumerates the trajectory set T with the num-
berO((|S|2|A|)Tmax) of trajectories. Thus, the computational
complexity of metric dM is O((|S|2|A|)Tmax). To compute
(ε, dM)-compression, we must calculate metric dM between
any states s1, s2 ∈ S. As Tmax can be very large, it is very
difficult to calculate the multi-step metric.

Metric-convertibility condition. To find a practical met-
ric to replace the multi-step metric, we propose a metric-
convertibility condition:

Proposition 1. If two metrics d1 and d0 satisfy the inequality:

d1 (s1, s2) ≤ Bd0 (d0 (s1, s2)) ,∀s1, s2 ∈ S, (14)

where Bd0 is a monotonically increasing function and Bd0 (0) =
0, then (ε, d0)-compression is also (Bd0 (ε) , d1)-compression.

Proposition 1 is easy to prove. The metric-convertibility
condition originates from the idea that (ε, d)-compression
is a neighborhood clustering. The neighboring states ob-
tained by metric d0 are also close in metric d1 that is
upper-bounded by Bd0 . If metric d0 upper-bounds multi-
step metric dM as in Eq. (14), (ε, d0)-compression induces
an EV (Bd0 (ε) , dM)-optimal policy of SMDP N . We then
start to look for an appropriate metric d0 and an appropriate
function Bd0 to upper-bound multi-step metric dM.

4.2 Geodesic Metric
We model an option by a subgoal option g. Let G(s) be the
available subgoal option set for state s, and G , ∪s∈SG(s)
be the set of all subgoal options. Subgoal option g has
two properties: (1) g is available for any state from which
the agent starts and can reach subgoal state sg ; (2) ωg is
the optimal policy for reaching subgoal sg in the shortest

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

time. The first property implies that if two states s1 and s2

can communicate with each other (i.e., state s2 is reachable
from state s1 and vice versa), their available subgoal option
sets G(s1) and G(s2) are the same. The second property
implies that the closer two states s1 and s2 are, the more
similar the two trajectories (starting respectively from s1

and s2 to sg) are, as shown in Figure 2(a). In summary, if
two states can communicate with each other and are close
in an environment, the multi-step metric value is small.

Environment

𝑠"

𝑠#
𝑠$

𝑠%

𝑑' 𝑠#, 𝑠$𝑑) 𝑠#, 𝑠$

(a)

Geodesic space

𝑠"

𝑠#
𝑠$

𝑑& 𝑠#, 𝑠$

(b)

Fig. 2: (a) The relationship between the relative distance
and the multi-step metric dM. (b) The geodesic space which
incorporates the environmental structures shown in (a).

According to our observations, we first consider the
Euclidean metric as d0 to measure how close two states
are. However, this metric does not consider the geometric
structures of the environment, thus it cannot measure the
relative distance between two states. As shown in Fig-
ure 2(a), although s1 and s3 are close in the Euclidean
metric space, s1 and s3 are far away in the environment
because a wall separates them. States can be considered
to lie in a manifold (for continuous environments) or a
graph (for discrete environments), where each state is a node
and weighted edges connect states and encode one-step
transition probabilities [40]. Compared with the Euclidean
metric, the geodesic metric, which measures the shortest
path between two points, is a more appropriate metric for
a manifold [41]. When adapted to an MDP, the geodesic
metric can be defined as the average minimum number of
steps for transition from one state to another.

Definition 3. For any s1, s2 ∈ S, the geodesic metric is defined
as:

dG (s1, s2) , min
πs1s2

∞∑
t=0

Γ (t)Ps1s2 (t |πs1s2) , (15)

where

Γ (t) =

{ ∑t
k=1 γ

k−1, t ≥ 1
0, t = 0,

and Ps1s2 (t |πs1s2) denotes a probability distribution over t ∈
[0,∞) ∪ ∞. Note that t < ∞ represents the first hit time at
which the agent reaches s2 starting from s1 under policy πs1s2
over actions, and t = ∞ represents that the agent never reaches
s2 starting from s1 under πs1s2 . If s2 is not reachable from s1

under any policy (i.e., Ps1s2(∞|πs1s2) = 1, ∀πs1s2 ), dG(s1, s2)
achieves the maximum value Γ(∞) = 1/(1− γ).

We make a state reversibility assumption that any ad-
jacent states can access each other through a one-step re-
versible action (that is, states lie in an undirected graph).

This assumption usually models the state space in an
MDP [35], [40]. We then prove that dG(s1, s2) is a metric.

Theorem 2. Under the state reversibility assump-
tion, dG (s1, s2) is a metric.

Proof. The proof is provided in Supplementary Materials.

In the rest of the paper, we consider ε to be much
smaller than 1/(1 − γ). dG(s1, s2) ≤ ε implies that s1

and s2 can communicate with each other and are close
in an environment, thus dG(s1, s2) can be used as d0. If
the reversibility assumption is not satisfied, dG (s1, s2) is
asymmetric (i.e., dG(s1, s2) may not equal to dG(s2, s1)).
One can adopt a symmetric geodesic metric to measure the
distance between states, i.e., dG(s1, s2) +dG(s2, s1); this will
be considered in future work.

As the geodesic metric represents the minimum distance
between two states, it depends on the environmental dy-
namics but not on a specific policy. Successor representa-
tion [42] and successor feature [43] can also measure the
relative distance between states, but they rely on both the
environmental dynamics and a specific policy.

We define the geodesic space as shown in Figure 2(b),
where the distance between states is measured by the
geodesic metric. We assume that the change in trajectory
distribution PT is smooth in the geodesic space.

Assumption 1. For any two states s1, s2 ∈ S that can commu-
nicate with each other and any their available subgoal option g, a
non-negative and monotonically increasing function δ exists such
that the following inequality holds:∣∣∣∣∣∑

τ∈T
(PT (τ | s1, g)− PT (τ | s2, g))

∣∣∣∣∣ ≤ δ (dG (s1, s2)) .

State spaces in real-life environments are usually
smooth. A small change in the starting point does not cause
a drastic change in the trajectory for reaching a subgoal.
The more distant two starting states are, the more different
the trajectories are for transition respectively from the two
states to a subgoal. Thus, function δ probably exists, which
depends on the environmental dynamics and can be esti-
mated with multi-step transition models.

Theorem 3. Under Assumption 1, the following inequality holds
for any s1, s2 ∈ S:

dM (s1, s2) ≤ BdG (dG (s1, s2)) ,

cR
δ (dG (s1, s2))

1− γ
+ cP (1− γ) dG (s1, s2) , (16)

when dG(s1, s2) < 1/(1− γ).

Proof. The proof is provided in Supplementary Materials.

Combining Theorem 1, Proposition 1, and Theorem 3,
one can obtain:

Corollary 1. For any ε ∈ [0, 1/(1−γ)), (ε, dG)-compression can
induce an EV (ε, dG)-optimal policy for SMDP 〈S,G, P,R, γ〉
with an error bound of:

EV (ε, dG) = 2e (H)

(
cRδ (ε)

1− γ
+ cP (1− γ) ε

)
.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

As we set cR = 1/(1 − γ) and cP = 1, the com-
plexity of error bound EV (ε, dG) is O(2δ(ε)/(1 − γ)3).
AlthoughEV (ε, dG) may be large in practical applications, it
can highlight the properties ensuring a tighter bound, which
will benefit further researches.

Computational complexity analysis. The geodesic met-
ric dG(s1, s2) requires the optimal policy for transition from
state s1 to state s2, which can be considered as an RL or
dynamic programming problem. Since the transition model
and reward functions are unknown, the computation of
metric dG(s1, s2) is both a learning problem and a computa-
tional one, which is difficult to solve in environments with
large-scale and high-dimensional state spaces. We analyze
this problem from a computational view in the following.

Since metric dG is the average minimum number of steps
for transition from one state to another, dG(s1, s2) ≤ ε is
equivalent to be able to transition from one state to another
(and vice versa) within a certain number of steps on average.
LetK be this average number that depends on ε, andK+Kη

be the number of steps within which the transition from s1

to s2 can be done with a high probability of η. K + Kη is
defined as:

K +Kη , F (η) = inf
k≥0

{
k∑
t=0

Ps1s2
(
t|π∗s1s2

)
≥ η

}
, (17)

where F (·) denotes a quantile function, π∗s1s2 denotes the
optimal policy for transition from state s1 to state s2. We
require (K+Kη)-step transitions to approximately compute
the average minimum step, leading to a computational com-
plexity of O((|S|2|A|)K+Kη ). Note that Kη is zero for η = 1
in deterministic environments. Even for high probability η
in stochastic environments,Kη may not be large because the
probability distribution over the first hit time in a stationary
Markovian system has a very habitual form: it goes through
a single maximum and then decays either exponentially or
as a power-law [44], [45]. Additionally, (ε, dG)-compression
only requires an indicator of whether the geodesic metric
between two states is less than ε instead of the exact metric
value, which inspires us to explore computationally cheap
methods to compress the state space.

4.3 Reward-Restricted Geodesic metric
Although Corollary 1 shows that compression based on
the geodesic metric induces an EV (ε, dG)-optimal pol-
icy, EV (ε, dG) can be very large due to the first term on
the right-hand side of Eq. (16). Neighboring initial states
induce similar trajectories when executing an option o, but
the difference in the cumulative rewards of these similar tra-
jectories can be large. Only for an environment with sparse
rewards will the difference be small. Thus we need to reduce
the cumulative reward difference by incorporating reward
information into the geodesic metric. We then introduce the
reward-restricted geodesic (RRG) metric as follows:

Definition 4. For any s1, s2 ∈ S, the RRG metric is defined as:

dRRG (s1, s2) ,
cR

1− γ
max

g∈G(s1)∩G(s2)
|R (s1, g)−R (s2, g)|

+ cP dG (s1, s2) . (18)

Same as the geodesic metric, dRRG is a metric under the
reversibility condition. We then have a theorem:

Theorem 4. For any s1, s2 ∈ S, the following inequality holds:

dM (s1, s2) ≤ BdRRG (dRRG (s1, s2)) , (1− γ) dRRG (s1, s2) ,
(19)

when dRRG(s1, s2) < 1/(1−γ). Thus, for any ε ∈ [0, 1/(1−γ)),
(ε, dRRG)-compression induces an EV (ε, dRRG)-optimal policy
for SMDP 〈S,G, P,R, γ〉 with an error bound of:

EV (ε, dRRG) = 2 (1− γ) εe (H) . (20)

Note that the above theorem does not rely on Assump-
tion 1. Bound BdRRG is much tighter than bound BdG because
γ is usually close to 1 and the first term of BdG is large.
However, the estimation of multi-step reward R is compu-
tationally expensive. This problem can be avoided when an
environment is deterministic or with sparse rewards.

Deterministic environments. We find that when SMDP
〈S,G, P,R, γ〉 is deterministic, multi-step reward R can be
replaced by reward function Rst that only rewards the agent
at the initial state in the process for executing subgoal
option g:

Rst (s, g) ,
∑
a∈A

ωg (a | s) r (s, a) ,∀s ∈ S, g ∈ G(s). (21)

We call Rst(s, g) the starting-reward function. We then have
the following theorem:

Theorem 5. The optimal value in deterministic
SMDP 〈S,G, P,R, γ〉 equals to that in deterministic SMDP
〈S,G, P,Rst, γ〉.

Proof. The proof is provided in Supplementary Materials.

This theorem implies that we can calculate the RRG
metric by replacing multi-step reward R with Rst, which
relieves the burden for estimating multi-step reward R. We
call it the starting-reward-based calculation (SR-calculation)
approach.

Environments with sparse rewards. In real-life environ-
ments, the agent is often rewarded only in a few states. In
this situation, we adopt the following approach to calculate
the RRG metric: taking each state with nonzero rewards
as an abstract state and then measuring only the similarity
between the states with zero rewards. In terms of measuring
the similarity between states with zero rewards, the RRG
metric is equivalent to the geodesic metric. Thus multi-step
rewards for similar states are the same. This approach is
practical when the states with nonzero rewards are sparse.
We call it the reward-equivalence constraint-based calcula-
tion (REC-calculation) approach.

SR-calculation can also calculate the RRG metric approx-
imately for environments with sparse rewards because most
of states along the trajectory taken by the option have no
reward. As our study focuses on environments with sparse
rewards, the SR-calculation and REC-calculation approaches
can both be used to calculate the RRG metric. For stochastic
environments with dense rewards, however, we have to
estimate multi-step rewards using trajectories sampled from
those environments.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

4.4 Geodesic Metric Learning

One advantage of the geodesic metric is that it can be
learned by a neural network. The RRG metric can be
calculated with the geodesic metric according to the SR-
calculation or REC-calculation approach. Metric learning
learns a distance metric from pairs of points that preserve
the distance relation among the training data [46]. For this
purpose, we need to construct a training dataset consisting
of pairwise states that preserve the geodesic metric between
them. Since state compression involves clustering states in
the neighborhood of certain anchor states, the exact distance
between states does not need to be calculated, and we only
need to know whether the distance between two states is
smaller than compression threshold ε.

We set K-step discount accumulation Γ (K) =∑K
t=1 γ

t−1 as the compression threshold denoted by εK .
The geodesic metric learning goal is to optimize a neural
network to map the raw state space to another that retains
the state pairs within distance εK of each other while
separating those outside distance εK . We define a training
dataset DK = {(si, sj) , zij}, where zij = 1 indicates
that the transition from state si to state sj is empirically
reachable within K steps, while zij = 0 indicates otherwise.
In the following, we discuss how to obtain training samples
for geodesic metric learning.

According to Definition 3, calculating the geodesic met-
ric requires the optimal policy for transition from one state
to another. However, we do not necessarily use optimal
policies to obtainK-step reachable state pairs. We prove that
these state pairs can be obtained by any policies as follows.

Theorem 6. Let ΩG(s,K) , {s′ | dG(s, s′) ≤ Γ (K)} be the
K-step distance region at state s in terms of the geodesic metric.
Let πA be a policy over actions and Π be the set of all possible
policies. For any s ∈ S, we have

ΩG (s,K) =
⋃

πA∈Π

ΩπA (s,K) , (22)

where ΩπA (s,K) , {s′ |
∑∞
t=0 Γ (t)Pss′(t |πA) ≤ Γ(K)}.

Proof. The proof is provided in Supplementary Materials.

Theorem 6 is based on a basic idea: if the average first
hit time for transition from state s1 to state s2 is less than K
under a non-optimal policy, it is also less than K under the
optimal policy. We use a uniform distribution over actions
as the sampling policy because it can produce sufficiently
diverse action sequences. After drawing state-action tra-
jectories {s0, a0, · · · , si, ai, · · · } from the environment, we
construct training dataset DK as follows:

zij =

{
1, |i− j| ≤ K
0, |i− j| ≥ K + l,

(23)

where we set l > 0 to create a gap between state pairs within
the K-step distance and those beyond.

We build a neural network Ψw parameterized with w to
learn the geodesic metric. We call Ψw a geodesic-metric net-
work. Figure 3 intuitively illustrates the learning objective
of Ψw, i.e., keeping all the state pairs within the K-step
distance close while separating those beyond the K-step

Geodesic space

𝜒-circle

Fig. 3: The geodesic metric learning objective. Geodesic-
metric network Ψw maps the state pairs within a K-step
distance to neighboring points (in a circle of radius χ) and
the state pairs beyond the K-step distance to distant points
(outside the circle of radius χ).

distance. Given training datasetDK , the neural network Ψw

is trained by minimizing the loss function:

L (w;DK) =

E(si,sj ,zij)∼DK

[
zij max {‖ Ψw (si)−Ψw (sj) ‖2 −χ, 0}2 +

(1− zij) max {χ+m− ‖ Ψw (si)−Ψw (sj) ‖2, 0}2
]
,

(24)

where χ is a threshold to differentiate whether two states
are within the K-step distance; m denotes a margin. This
loss function can be considered a variant of the contrastive
loss function [47].

The geodesic-metric network maps a raw state s to
a state representation Ψw (s). We call this the geodesic
representation. The geodesic metric is represented as the
Euclidean metric on the geodesic representation:

dG,w (s1, s2) =
εK
χ
‖ Ψw (s1)−Ψw (s2) ‖2 . (25)

Like many studies [6], [21], [48], [49], we consider one-
step rewards that are independent of actions (i.e., r(s) =
r(s, a),∀a ∈ A). We adopt the SR-calculation approach to
compute the RRG metric, i.e.,

dRRG,w (s1, s2) =
cR

1− γ
|r (s1)− r (s2)|+ cP dG,w (s1, s2) .

(26)
When reward functions are dependent on actions, RRG
metric dRRG,w can be calculated using the REC-calculation
approach which does not require subgoal options.

The successor representation learns continuous similar-
ity between states [42]. By contrast, the objective of geodesic
metric learning is to retain binary similarity between states
(i.e., whether two states are similar or not), which has less
learning burden than the successor representation. Savi-
nov et al. [50], [51] proposed a classification network to
discriminate whether transition from one state to another
is reached within K steps. Compared with their method,
the geodesic metric network has two advantages. First, a
metric network can be used to partition the state space,

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

which guarantees each state to be mapped to one partition.
Thus, it can be used to perform state compression in an
SMDP. Second, a metric network can be used to calculate
the relative distance between two states. Therefore, a metric
network can provide reward shaping for goal-reaching tasks
where the agent is rewarded for reaching a goal state. We
verified the advantages of the geodesic-metric network for
those tasks in Section 6.2.

5 RRG METRIC-BASED REINFORCEMENT LEARN-
ING

In this section, we present an algorithm to perform state-
temporal compression-based RL (see Figure 1(b)) using the
RRG metric, called the RRG metric-based reinforcement
learning algorithm (RRG-RL). As shown in Figure 4, this
algorithm has two phases: a state compression construction
phase and an abstract reinforcement learning phase. The
first phase trains a geodesic-metric network to perform RRG
metric-based state compression (RRG-compression). With
this state compression, we then train the subgoal options
and the policy over them.

RRG-AS option

Phase 1: RRG-compression algorithm Phase 2: RRG-RL algorithm

Abstract agent

State compression

Abstract subgoal
Trajectory 
memory

Sampling
agent

Geodesic-
metric 

network

Environment

State 
dataset

Sampling 
batch data Storing

State center

Environment

Geodesic-
metric 

network

2

z

1

Fig. 4: Two phases in training an RRG-RL algorithm.

5.1 Phase 1: RRG-Compression Algorithm
Unlike usual RL settings, our algorithm takes some episodes
to learn the geodesic metrics before training the agent, as
shown in Figure 4. To fairly compare our algorithm with
many other RL algorithms, we incorporate the metric learn-
ing process into the reinforcement learning process. We train
geodesic-metric network Ψw in a reinforcement learning
style. We use a sampling agent with the uniform policy over
actions to interact with the environment and store the sam-
pled trajectories in memory MG. With the trajectories evenly
drawn from MG, we construct dataset DK = {(si, sj , zij)}
according to Eq. (23). During the construction, we maintain
the value of label zij to be 1 if state si and state sj were ever
sampled as aK-step reachable state pair in memoryMG. We
then use dataset DK to train geodesic-metric network Ψw.
Lines 1-7 of Algorithm 1 show this metric learning process.
After geodesic-metric network Ψw is learned, the RRG
metric can be easily obtained according to Eq. (26).

Using RRG metric dRRG,w, we can perform (ε, d)-
compression. It aggregates states into the same abstract
state if the RRG metric between them is less than a spec-
ified compression threshold. Thus, (ε, d)-compression can
be considered as threshold-based state clustering [52]. As ε

is predefined, the maximum size of state clusters is fixed.
The number of state clusters should correspond to the state
space size. In general, a larger state space entails more
state clusters. The state compression algorithm is shown in
Lines 9-16 of Algorithm 1, the aim of which is to divide
the raw state space into some state clusters where the RRG
metric between the central state of each state cluster and any
state in this cluster is less than εK . Let {S1, · · · , Sx, · · · } de-
note these state clusters. We compress each state cluster Sx
into one abstract state x. Thus, Sx is the inverse image of
abstract state x in the raw space. Let sc

x be the center of state
cluster Sx and C be the set of central states; then,we use C
to construct a state compression function as follows:

φεK ,dRRG,w (s) = arg min
sc
x∈C

dRRG,w (s, sc
x) . (27)

To simplify the notation, we use φK to denote φεK ,dRRG,w

in the rest of the paper. Eq. (27) means that we need
to go through all possible state clusters to compute the
abstract state for each new state. In future work, we will
consider constructing the topology of abstract states. Using
this topology, we can search only the abstract states close to
new states, which shrinks the set of possible state clusters
for new states.

Algorithm 1 RRG-Compression Algorithm: Get[φ](K,N1).

Require: K and training episodes N1 of the first phase.
1: Initialize geodesic-metric network parameters w and the

sampling agent with a uniform distribution over actions.
2: for n = 0 : N1 − 1 do
3: Use the sampling agent to sample trajectory

{(st, at, r(st))} from the environment.
4: Store trajectory {(st, at, r(st))} in memory MG and

store state st in set S .
5: Construct dataset DK using the samples from mem-

ory MG according to Eq. (23).
6: Update parameters w with loss function L(w;DK).
7: end for
8: Construct the calculation equation (Eq. (26)) of metric
dRRG,w with the learned geodesic metric dG,w.

9: Sample state s without replacement from S and take it
as the first central state of set C = {sc

1 = s}.
10: while S is not ∅ do
11: Sample state s′ without replacement from S .
12: if minsc

x∈C dRRG,w(s′, sc
x) > εK then

13: Assign s′ as a central state of new cluster and then
add s′ to set C .

14: end if
15: end while
16: Construct compression function φK with set C accord-

ing to Eq. (27).
17: Output: compression function φK .

Algorithm 1 does not require all states in the environ-
ment; instead, it requires only the state set S that covers
the environment evenly. For any state s /∈ S , φK can find a
central state sc

x closest to s in the RRG metric and maps s to
abstract state x, thus guaranteeing each state to be mapped
to an abstract state.

As described in Section 3, function φK com-
presses SMDP 〈S,G, P,R, γ〉 into abstract SMDP

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

〈X,G, PφK , RφK , γ〉. According to the triangle inequality,
the RRG metric between any two states in the same state
cluster is less than 2εK . Therefore, φK is a (2εK , dRRG,w)-
compression function. According to Theorem 4, this
compression induces an EV (2εK , dRRG,w)-optimal policy of
the raw SMDP with error bound 4

(
1− γK

)
e (H), showing

that K is important for the error bound. The larger K is,
the more the state space will be reduced, and the larger
the value of EV (2εK , dRRG,w) will be. In Section 6, we
empirically present the impact of different K values on the
performance of RRG-RL.

5.2 Phase 2: RRG-RL Algorithm

In phase 2, RRG-RL learns a two-level policy: subgoal
options and a policy over them.

5.2.1 RRG Metric-based Abstract Subgoal Option
It is difficult to optimize the policy over subgoal options
when the set of subgoal states is large. One way to tackle
this difficulty is to aggregate all subgoal states into several
abstract subgoal states [53], [54]. The option to reach an
abstract state is called the abstract subgoal option [53], [54].
Different from previous studies [53], [54], we use a state-
similarity metric (RRG) to cluster subgoal states into abstract
subgoal states, thus we term our abstract subgoal option as
RRG metric-based abstract subgoal option (RRG-AS option).

Let g̃ denote an abstract subgoal option and xg̃ be
its abstract subgoal. Similar to subgoal option g, abstract
subgoal option g̃ is defined as a tuple 〈Ig̃, ωg̃, βg̃〉, where Ig̃
denotes an initiation set, ωg̃ (a|s) denotes an option policy,
and βg̃ (s) denotes a termination function to terminate g̃
when xg̃ is reached.

𝑆"#$
RRG-based 
abstract subgoal 

𝜔&' 𝑎|𝑠

RRG-AS option 

𝑠 𝑎

The first stage

The second stage

Fig. 5: RRG-AS option.

How do we determine whether RRG-AS option g̃ reaches
abstract subgoal xg̃? A straightforward idea is that as long
as the agent arrives at any state s in inverse image Sxg̃ of xg̃ ,
RRG-AS option g̃ is considered to reach abstract subgoal xg̃
and terminated at state s. However, this idea may overlook
some important states within Sxg̃ . To tackle this problem, we
design a two-stage process for RRG-AS options. As shown
in Figure 5, each RRG-AS option g̃ consists of two stages:
reaching the center of the inverse image Sxg̃ of xg̃ and then
reaching raw state s ∈ Sxg̃ . State s is the end state and
determined by function βg̃(s). The second stage enables the
states within Sxg̃ to be explored in a fine-grained way.

Each RRG-AS option g̃ can represent a cluster of sub-
goal options whose subgoal states belong to Sxg̃ . For any

state s ∈ Sxg̃ , the option whose subgoal state is s can be ap-
proximated by RRG-AS option g̃ because the optimal policy
for directly reaching s ∈ Sxg̃ can be approximated by the
policy first reaching the center of Sxg̃ and then reaching s.
We theoretically analyze the relationship between subgoal
options and RRG-AS options in Supplementary Materials.

Optimization of option policy ωg̃ corresponds to ter-
mination function βg̃ . We can optimize the termination
function using the termination gradient algorithm [14], i.e.,
both the option policy and termination function require
optimization. Whereas, to ease the burden for learning RRG-
AS options, we do not optimize βg̃ and heuristically design
a non-parametric termination function. Our basic idea is to
let option g̃ explore abstract area Sxg̃ sufficiently instead
of terminating at a single end state in the second stage.
Option g̃ is terminated in the T∆-th state after arriving at
the central state sc

xg̃
, where T∆ is a time window in which

the agent explores raw states within Sxg̃ .
It is efficient to explore the states within Sxg̃ since they

are close in the environment. Thus, we design an intrinsic
reward to learn RRG-AS option g̃:

rg̃ (st, at) = (1− Iarrive) I
[
st = sc

xg̃

]
︸ ︷︷ ︸

The first stage

+

λ1Iarrive I [φK (st) = xg̃ and st 6∈ hg̃]︸ ︷︷ ︸
The second stage

+λ2r (st, at) , (28)

where Iarrive is 1 after the first time to reach central state sc
xg̃

and Iarrive equals 0 before that; I [·] = 1 when its argument is
true and zero otherwise; hg̃ denotes the history trajectory
when executing g̃; λ1 and λ2 denote weighting factors.
Before arriving at sc

xg̃
, the first term in the right of Eq. (28)

drives option g̃ to reach sc
xg̃

. In continuous environments,
whether the central state is reached can be judged by
watching if the geodesic metric between them is less than a
small predefined threshold. After arriving at sc

xg̃
, the second

term in the right of Eq. (28) drives option g̃ to explore the
states within the inverse image Sxg̃ of g̃. Environmental
reward r(st, at) is taken as an auxiliary reward for learning
RRG-AS options, thus we set λ2 to be smaller than λ1.

The learning objective for RRG-AS options is to maxi-
mize the expected cumulative (intrinsic) reward. A range
of techniques can optimize the objective function, such
as the Q-learning and A2C algorithms. We adopt the
Q-learning algorithm to learn RRG-AS option policy.
Let Qθ(s, a, g̃) denote the parameterized Q-value function;
then RRG-AS option policy ωg̃ is expressed as ωg̃(a | s) =
arg maxa′∈AQθ(s, a

′, g̃). In the training process, each ac-
tion a is sampled in a greedy policy with exploration proba-
bility E1 or in a softmax policy.Qθ(s, a, g̃) is learned through
minimizing the loss function:

J1 (θ) = E(s,a,s′,rg̃,g̃)∼M g̃[(
rg̃ + γmax

a′∈A
Qθ (s′, a′, g̃)−Qθ (s, a, g̃)

)2
]
, (29)

where M g̃ denotes the replay memory of RRG-AS option g̃.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Algorithm 2 RRG-RL Algorithm

1: Initialize parameters {θ, ϑ}, exploration probabilities E1
and E2, K, training episodes N1 of the first phase, and
total training episodes Nepisodes.

2: Obtain compression function: φK ← Get[φ](K,N1).
3: for n = N1 : Nepisodes − 1 do
4: Initialize state s← s0 and abstract state x← φK(s).
5: while s is not a terminal do
6: Choose g̃ from QA

ϑ(x, g̃) according to the E2-greedy
policy and initialize tg̃ = 0.

7: while g̃ is not terminated and s is not a terminal do
8: Choose a from Qθ (s, a, g̃) according to the E1-

greedy policy.
9: Execute a, obtain environmental reward r and

next state s′, calculate intrinsic reward rg̃ , and
store experience (s, a, s′, rg̃, g̃) in M g̃ .

10: Update tg̃ ← tg̃ + 1 and s← s′.
11: Update RφK ← RφK + γtg̃r.
12: Update θ with loss function J1(θ).
13: end while
14: Store the experience (x, g̃, φK(s), RφK , tg̃) in MA.
15: Update ϑ with loss function J2(ϑ).
16: end while
17: end for

5.2.2 Abstract Agent
RRG-AS options transform optimization of pol-
icy πφK (g |x) over subgoal options into optimization of
policy πA

φK
(g̃ |x). A range of optimization techniques can

be used to learn policy πA
φK

(g̃ |x). We adopt the Q-learning
algorithm. Let QA

ϑ (x, g̃) denote the parameterized Q-value
function for the policy over g̃; then, πA

φK
is expressed

as πA
φK

(g̃ |x) = arg maxg̃′∈G̃(x)Q
A
ϑ (x, g̃′). QA

ϑ (x, g̃) can be
learned by minimizing the following loss function:

J2 (ϑ) = E(x,g̃,x′,RφK ,tg̃)∼MA(RφK + γtg̃ max
g̃′∈G̃(x)

QA
ϑ (x′, g̃′)−QA

ϑ (x, g̃′)

)2
 , (30)

where tg̃ denotes the time steps needed for executing g̃; G̃(x)
denotes the set of RRG-AS options available at abstract
state x; MA denotes the replay memory of the abstract
agent. Each g̃ is sampled in a greedy policy with explo-
ration probability E2 (or in a softmax policy). Algorithm 2
illustrates the overall RRG-RL algorithm.

6 EXPERIMENTS

To evaluate the performance of RRG-RL, we chose two
complex tasks in both a discrete environment (2D Minecraft)
and a continuous environment (Doom). In the two envi-
ronments, rewards were given only after accomplishing a
specific complex sequence of actions. All the experiments
were conducted with PyTorch 0.3.1 and Python 3.5.

6.1 Environments
2D Minecraft [21] is a discrete version of the popular game
Minecraft. As shown in Figure 6, the agent lives in an

11× 22 grid world with many raw materials, such as wood,
a workbench, a key, and a treasure box. In this environment,
the agent uses coordinate (x, y) as the input. It has four
available actions: moving up, down, right, and left. In the
environment, an action may fail with a probability of 1/5,
in which case the agent randomly chooses one of the other
three actions. The agent can collect raw materials (e.g., a
key) only when reaching the corresponding states. Andreas
et al. [21] used task-specific information to solve complex
tasks in a 2D Minecraft environment. In this work, we
attempted to solve complex tasks without additional task-
specific priors.

4

2

0

6

8

10

0 2 4 6 8 10 12 14 16 18 20

Fig. 6: 2D Minecraft map.

start 
point

first-person 
      view

key
goal 
point

Fig. 7: Doom game map.

The Doom game [2] employs a first-person perspective
in a semi-realistic 3D world (Figure 7), where the agent
can perform one of three standard actions: moving forward,
turning left, and turning right. The three standard actions
can be combined, yielding 4 combination actions: mov-
ing forward+turning left, moving forward+turning right,
turning left+turning right, and moving forward+turning
left+turning right. In this experiment, we used the 3 stan-
dard actions and 4 combination actions as the action set.
The input of the agent is a three-channel 84 × 84 RGB
image of the 3D environment. In addition to the high-
dimensional state space, Doom tasks are usually complex,
and the rewards are very sparse. For example, some doors
require a key to open, but the key must be searched for
by the agent in a large room. The agent is rewarded only
when it opens the door. To accomplish these tasks, the agent
needs to not only tackle the complex inputs but also carry
out efficient plans in the large-scale state space.

6.2 Results of Geodesic Metric Learning

For the 2D Minecraft task, the geodesic-metric network was
a three-layer (128-128-20) neural network, as shown in the
dashed box in Figure 11. The first and second layers were
respectively followed by a ReLU and a Tanh activation. As

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

0

0.2

0.4

0.6

0.8

1

(a)
0

0.2

0.4

0.6

0.8

1

(b)
0

0.2

0.4

0.6

0.8

1

(c)
0

0.2

0.4

0.6

0.8

1

(d)

Fig. 8: (a) Groud truth. (b) The learned geodesic metrics. (c) Metric based on raw observations. (d) Metric based on
successor representation. Subfigures (a) to (d) visualize the four metrics between (4, 8) and the other states, respectively. We
normalized all the distance values to [0, 1] with min-max normalization. Since larger values of the successor representation
represent closer states, we used the successor representation’s negative values and normalized them as the state metrics.

(a)

A2C with geodesic metric
A2C with successor representation
A2C with Euclidean metric
A2C

Goal-Reaching Task (Sparse Reward Setting)

Episode

R
ew

ar
d

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

(b)

Episode
0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
ew

ar
d

0

1

2

3

4

5

6

7

Goal-Reaching Task (Very Sparse Reward Setting)

A2C with geodesic metric
A2C with successor representation
A2C with Euclidean metric
A2C

(c)

Fig. 9: (a) Complex grid world. Average rewards±std over 10 runs for (b) the goal-reaching task with random starting
points and (c) the goal-reaching task with the farthest starting point. The shaded areas represent the standard deviations.

presented in Algorithm 1, we used a uniform distribution
over actions to sample trajectories from the environment.
We trained the geodesic-metric network with 1000 episodes.
For each episode, we evenly drew samples from mem-
ory MG to construct batch dataset DK which consisted of
ten mini-batches of 64 state pairs. We adopted the Adam
optimizer [55] to optimize the geodesic-metric network.

For the Doom game, the geodesic-metric network was
a convolutional neural network (CNN). As shown in the
dashed box of Figure 15, all the filters in this CNN had the
same size of 3× 3 with stride 2. Each of its first three layers
had 64 filters. Its fourth layer had 128 filters and the fifth
had 256. The fifth layer was followed by two additional fully
connected layers (the sizes of which were both 256). The
first and second fully connected layers were followed by a
ReLU and Tanh activation, respectively. We used a uniform
random policy to sample trajectories. At each episode, we
evenly drew samples from memory MG to construct batch
dataset DK which consisted of 10 mini-batches of 128 state
pairs. We trained the geodesic-metric network with 1500
episodes. Other parameters can be found in Supplementary
Materials.

We consider the 2D Minecraft environment to visualize
the results of the geodesic metric learning. To compare the
learned geodesic metric dG,w with the ground truth, we
chose s = (4, 8) as an example and visualized the learned
geodesic metrics and the exact geodesic metrics calculated
by a discount of 0.9 in Figures 8(b) and 8(a), respectively. The
two figures showed that dG,w was a good approximation of
the exact geodesic metric. Particularly, the closer the state
was to (4, 8), the more accurate dG,w was. This scenario

was required by (ε, d)-compression that compresses only
neighboring states.

We compared the learned geodesic metrics with two
baselines: the Euclidean metric and the successor represen-
tation [42]. We visualized the Euclidean metric based on
raw observations in Figure 8(c). The Euclidean metric did
not incorporate the geometric structure of the environment.
Like our geodesic-metric network, the successor represen-
tation was able to encode environmental topology [42],
[56]. To make fair comparison, we also used the uniform
distribution over actions to sample trajectories from the
environment to learn the successor representation, which
also took 1000 episodes. More details can be found in
Supplementary Materials.

The geodesic metric can provide reward shaping for
goal-reaching tasks where the agent is rewarded for reach-
ing a goal state because it measures the relative distance be-
tween two states. These tasks are difficult to solve in a large
and high-dimensional environment [57]. Some works [19],
[48] used the Euclidean metric between the agent’s state and
the goal state as the reward shaping for the goal-reaching
task. Compared with the Euclidean metric, our geodesic
metric is more appropriate for complex environments. Let sg
be the goal state. The metric-based reward shaping is

rsg (s, a) = r (s, a)− αd
(
s, sg

)
, (31)

where d is a state metric and α is a weighting constant.
Notably, we used this reward shaping function only for
goal-reaching tasks (Figure 9(a)) and did not use it for
2D Minecraft and Doom tasks. The metric-based reward
shaping has been used in many studies [19], [48], [58]. If

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Key

Box

(a)

Iron

Workbench

Box

(b)

Key-Searching Task

R
ew

ar
d

Episode
0 5000 10000 15000 20000 25000

0

10

20

30

40

50

60

70
RRG-RL(K=4)
RRG-RL(K=2)
SHRL
FuN
HIRO
Option-Critic

(c)

RRG-RL(K=4)
RRG-RL(K=2)
SHRL
FuN
HIRO
Option-Critic

0 5000 10000 15000 20000 25000

10

20

30

40

0

Episode

R
ew

ar
d

Key-Making Task

(d)

Fig. 10: (a) The key-searching task. (b) The key-making task. (c) Average rewards±std over 10 runs for the key-searching
task. (d) Average rewards±std over 10 runs for the key-making task. The shaded areas represent the standard deviation.

the metric d properly measures the distance between the
current state and the goal state, it will guide the agent to
reach the goal. Empirically, the learned metrics might not be
exact for all state pairs and possibly provided a few wrong
rewards, thus α should not be large and we set it to 0.15.

To verify the advantages of the geodesic metric, we de-
signed a complex environment where the agent is spawned
in a 22×22 grid world (Figure 9(a)). We set the goal as state
s = (6, 4). We chose two goal-reaching tasks: moving from
random starting points to the goal and moving from the
farthest starting point (6, 6) to the goal. The agent obtained
reward 20 only at the goal state. Thus, extrinsic rewards
were sparse, especially for the second task. We evaluated
several A2C algorithms with the geodesic metric, with the
successor representation, with the Euclidean metric, and
without reward shaping, respectively. The geodesic-metric
network for the complex grid world had the same archi-
tecture as that for the 2D Minecraft. All settings of the
four algorithms were the same, except for reward shap-
ing function d(s, sg). Training parameters can be found in
Supplementary Materials. Figures 9(b) and 9(c) illustrate
that the geodesic metric-based reward shaping achieved
substantially better performance than the three baselines.

6.3 Results in 2D Minecraft
Task. In this environment, we designed two tasks: a key-
searching task and a key-making task. As shown in Fig-
ure 10(a), the key-searching task required the agent to look
for a key and then use it to open the treasure box. Without
the key, the agent could not open the box or obtain the
treasure. In this task, a reward of 100 was provided only
when the agent successfully opened the box. As shown in
Figure 10(b), for the key-making task, the agent must first
collect the iron and the workbench to produce a key, and
then used the key to open the box. Similar to the key-
searching task, a reward of 100 was provided only when
the box was successfully opened. Both tasks had long-term
structural rewards [10] because the agent was rewarded
only when it accomplished a sequence of specific behavior.

Baseline. Andreas et al. [21] first proposed a 2D
Minecraft environment and solved tasks in the environment
by providing task-specific instruction information. As we
attempted to solve tasks without any additional task priors,

we compared the performance of our approach against
those methods not requiring additional task information.
Kulkarni et al. [6] used a policy over subgoals and subgoal
options to solve complex tasks with long-term structural
rewards, which is essentially a subgoal-based HRL (SHRL)
framework. This framework took the raw state space as
the subgoal space, thus the number of subgoals equaled
the number of states. Since RRG-RL consists of a policy
over the abstract subgoals and the abstract subgoal options,
SHRL can be considered as a special case without state
abstraction, i.e., K = 0. We also evaluated the RRG-RL
algorithm in the cases of K = 2 and K = 4. Furthermore,
we compared our approach against those methods that com-
bine state compression with the subgoal option framework
using neural networks, such as FuN [18] and HIRO [19].
In the two algorithms, the (continuous) output of a neural
network is used as the subgoal; thus, the high-level policy
(the policy over subgoals) is a continuous control policy.
We also evaluated the performance of a well-known HRL
method, the option-critic [14].

Tabular 
representation
𝑄"#(𝑥, 𝑔()

Fully-connected 
layer with 20 units

𝒔𝒕

No gradient 
𝑥,

Fully-connected 
layer with 128 units

Fully-connected 
layer with 128 units

	Ψ𝐰(𝑠,)

argmin7	𝑑99:,𝐰(𝑠,, 𝑠7;)

Tabular 
representation
𝑄<(𝑠, 𝑎, 𝑔(>)

...
𝑎,

RRG-AS options

Tabular 
representation
𝑄<(𝑠, 𝑎, 𝑔(?)

Fig. 11: The abstract reinforcement learning architecture for
the 2D Minecraft environment. This was used to learn the
agent policy in the second phase of RRG-RL.

Implementation. In the two tasks, the agent was ini-
tialized to the same location, as illustrated in Figure 6.
We set the discount γ to 0.995. The experimental details
for baselines are in Supplementary Materials. As shown in
Figure 4, the RRG-RL algorithm has a two-phase training.
Before the training, our algorithm had no access to any
samples. In the first phase, we trained the geodesic-metric
network with 1000 episodes (see details in Section 6.2).

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

We represented the abstract agent and RRG-AS options
with the tabular method, as shown in Figure 11. After
compressing the state space using Algorithm 1, we took
each abstract state as an abstract subgoal of RRG-AS option.
All states in 2D Minecraft could communicate with each
other, thus all RRG-AS options were available at each state.
We assigned a replay memory to each RRG-AS option.
According to Algorithm 2, when an RRG-AS option was
selected, the agent used the option policy to interact with
the environment, stored the sampled trajectory into the
replay memory for the selected option, and then updated
the option policy. We implemented the policy over RRG-
AS options using a greedy policy with the exploration
probability 0.95 annealing to 0.05 as the learning proceeds.
We implemented RRG-AS option policies using a softmax
policy with a temperature of 0.01 annealing to 0.0001. Other
parameters are provided in Supplementary Materials.

Results. To perform RRG-RL, we first used the RRG
metric dRRG,w to perform state compression with Algo-
rithm 1. We then obtained 9 and 24 abstract states un-
der K = 4 and K = 2, respectively, as shown in Fig-
ures 12(a) and 12(b). Since we set cR = 1/(1 − γ) and the
agent was rewarded only in the box state, the RRG metric
between the box state and any other state was very large.
Thus, the box state alone made up an abstract state. For
the other algorithms without state abstraction, the number
of states was 161. After reducing the state space, our RRG-
RL algorithm could solve the tasks in an abstract SMDP.
In Figures 10(c) and 10(d), we illustrated the curves of
average rewards±std of the five algorithms. Table 2 showed
the final average rewards±std of the five algorithms. The
results demonstrated that our algorithm (K = 2, 4) out-
performed all the baselines: it not only achieved higher
average rewards but also converged more quickly than all
the baselines in the two tasks.

the box state

(a)
the box state

(b)

Fig. 12: (a) Visualization of abstract states for K = 4. (b)
Visualization of abstract states for K = 2. One colored block
represents an abstract state.

By comparing the RRG-RL and SHRL algorithms, we
found that state compression significantly accelerated the
learning of complex tasks, because the RRG-based state
compression reduced the number of subgoals through clus-
tering raw states. As shown in Table 2, when K = 2
and K = 4, the numbers of RRG-based abstract subgoals
were 9 and 24 respectively. In contrast, the number of
subgoals for the SHRL algorithm was 161. FuN [18] and
HIRO [19] used the output space of the neural network as
the subgoal space, resulting in a continuous subgoal space.
As the number of RRG-AS options was less than that of
subgoal options, it was easier to optimize the policy over
RRG-AS options than to optimize the policy over subgoal

options. Thus, it was probably easier to find a good solution
with our algorithm than the baselines.

TABLE 2: Average rewards±std for two 2D Minecraft tasks.

States Subgoals Key-searching Key-making
Option-Critic [14] 161 - 0±0 0±0
FuN [18] 161 Continuous 0±0 0±0
HIRO [19] 161 Continuous 0±0 0±0
SHRL [6] 161 161 21.0±12.2 10.5 ± 15.3
RRG-RL (K=2) 24 24 40.6 ± 16.7 27.9±8.7
RRG-RL (K=4) 9 9 54.9±5.7 35.6±10.3

The impact of different N1 values. We empirically
studied how the number of metric learning episodes N1

impacts the overall performance of RRG-RL. As shown
in Figures 13(a) and 13(b), RRG-RL suffered performance
degradation when N1 was small but maintained high per-
formance when N1 was comparatively large. The possi-
ble reason was as follows. A small N1 led to insufficient
training samples that weakened the generalization ability
of the geodesic-metric network, but a large N1 could pro-
vide sufficient samples for the geodesic-metric network.
As N1 increased, the marginal improvement from extra
training samples got smaller, so the RRG-RL performance
converged.

Key-Searching Task

N1

K=4

K=2

R
ew

ar
d

200 400 600 800 1000 Automatic
0

10

20

30

40

50

60

70

(a)

Key-Making Task

K=4

K=2

N1

200 400 600 800 1000 Automatic

R
ew

ar
d

0

10

20

30

40

50

(b)

Fig. 13: Average rewards±std of different N1 values for (a)
the key-searching task and (b) the key-making task.

According to the above analysis, we propose a heuristic
way to adjust N1 automatically. We used the geodesic-
metric network to predict label zij of state pair (si, sj) (the
true label was given according to Eq. (23)) through judging
whether ‖Ψw(si) − Ψw(sj)‖ was smaller than χ. Before
training the geodesic-metric network at each episode, we
recorded the prediction accuracy for labels of state pairs
from the new trajectory sampled from the environment. This
accuracy reflected the geodesic-metric network’s (general-
ization) capability to some degree. We terminated the metric
learning phase when the prediction accuracy converged at
a value within an error range of 0.5% during the last 50
episodes. More details can be found in Supplementary
Materials. Figures 13(a) and 13(b) demonstrated that the
performance of automatic N1 was similar to that of large N1

(i.e., 800 and 1000). However, we believe that a better ap-
proach is to adjust N1 according to the sampling sufficiency
of the state space, which we leave for future work.

6.4 Results in Doom
Task. To evaluate the performance of our algorithm in a
complex environment, we considered the key-searching task
in Doom. As illustrated in Figure 7, the task required the

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

finding the key reaching the goal

RRG-RL

FuN

ICM

Option-Critic

(a)

ICM
Option-Critic
FuN

RRG-RL

Key-Searching Task in Doom

Episode
10000 20000 30000 40000 500000

R
ew

ar
d

0

10

20

30

40

50

60

(b)

Fig. 14: (a) The learned trajectories of the four algorithms. (b) The reward curves of the four algorithms for the key-finding
task in Doom.

agent to pick up the key and then reach the goal. The agent
started at a fixed position and orientation. It received a
reward of 100 if it first obtained the key and then reached
the goal point. However, it obtained a reward of only 20
if it arrived at the goal point without the key. A reward
of 5 was provided if only the key was obtained. The agent
had to accomplish the task within 1000 steps. Similar tasks
in 2D environments (e.g., the Montezuma game) have been
solved [6]. However, such task has not been accomplished
in a first-person 3D environment without any task-specific
priors.

Baseline. SHRL [6] without task-specific information
and HIRO [19] have not been reported to solve RL prob-
lems in a high-dimensional state space. Thus, we did not
evaluate the two algorithms in Doom. Vezhnevets et al. used
FuN [18] to solve complex tasks in Montezuma, which is a
game environment with high-dimensional images. Pathak
et al. [23] proposed a curiosity-driven algorithm named
intrinsic curiosity module (ICM) to solve tasks with spare
rewards in the Doom environment. Therefore, we chose
these two algorithms as baselines. We also compared our
framework against the well-known option-critic [14].

Tabular 
representation
𝑄"#(𝑥, 𝑔()

Fully-connected 
layer with 256 units

𝒔𝒕

No gradient 
𝑥,

64 3*3 filters 
of stride 2

64 3*3 filters 
of stride 2

64 3*3 filters 
of stride 2

128 3*3 filters 
of stride 2

256 3*3 filters 
of stride 2

256 units	Ψ𝐰(𝑠,)

argmin7	𝑑99:,𝐰(𝑠,, 𝑠7;)

32 8*8 filters 
of stride 4

128 6*6 filters 
of stride 2

64 5*5 filters 
of stride 1

Fully-connected 
layer with 256 units

Action:
7 units

32 8*8 filters 
of stride 4

128 6*6 filters 
of stride 2

64 5*5 filters 
of stride 1

Fully-connected 
layer with 256 units

Action:
7 units

...

...
𝑎,

𝑄=(𝑠, 𝑎, 𝑔(>) 𝑄=(𝑠, 𝑎, 𝑔(>)

RRG-AS options

Fig. 15: The abstract reinforcement learning architecture for
the Doom environment. It was used to learn the agent policy
in the second phase of the RRG-RL algorithm.

Implementation. We used repeated actions four times
during training in Doom, similar to Mnih et al. [1].

We trained the algorithms with 50000 episodes, and any
episode requiring more than 1000 steps was terminated.
We set the discount γ of each step to 0.995. The details
for the baselines were in Supplementary Materials. Like
the Minecraft experiment, the RRG-RL algorithm for the
Doom environment had no access to any sample before
the two-phase training. In the first phase, the training of
the geodesic-metric network took 1500 episodes (see details
in Section 6.2). Like the 2D Minecraft, after the state space
was compressed using Algorithm 1, we took each abstract
state as an abstract subgoal of RRG-AS option. All RRG-
AS options were available for each state. We assigned a
replay memory to each RRG-AS option. We represented the
abstract agent with the tabular method and RRG-AS options
with CNNs, as shown in Figure 15. Q-value function Qθ
for each RRG-AS option was represented by a convolution
architecture that had a first layer with 32 8 × 8 filters of
stride 4, a second layer with 128 6× 6 filters of stride 2, and
a third layer with 64 5× 5 filters of stride 1. We then added
two fully connected layers (with sizes 256 and 7). The first
fully connected layer was followed by a ReLU activation
function. We implemented the RRG-AS option policy using
a greedy policy with exploration probability 1 annealing
to 0.1 as the learning proceeds. We used a tabulation (or a
matrix) ϑ to represent QA

ϑ and implemented the policy over
RRG-AS options using a greedy policy with exploration
probability 1 annealing to 0.0001 as the learning proceeds.
Other parameters are provided in Supplementary Materials.

Results. We illustrated the four algorithms’ converged
trajectories in Figure 14(a) and reward curves in Fig-
ure 14(b). The optimal path for reaching the goal point
from the starting point required approximately 36 steps.
However, the optimal path for finding the key and then
reaching the goal required approximately 115 steps, which
was three times of 36 steps. The three baselines just reached
the goal without finding the key. Thus, their discounted
cumulative rewards were around 20× γ36 ≈ 16.

Due to the long-term structural exploration, the agent
rarely accomplished the key-searching task in the train-
ing process. The key-searching task was difficult to solve
without efficient long-term exploration. Efficient exploration
techniques, such as curiosity-based methods [23], can ex-

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

plore more unseen states but cannot explore the long-term
structural actions. Although FuN can explore long-term
actions with subgoals, optimizing the policy over subgoals
becomes very difficult due to the large-scale state space.
Thus, FuN failed to accomplish the key-searching task.

Compared with the baselines, our state-temporal com-
pression (i.e., RRG-based abstract states and RRG-AS op-
tions) enabled the agent to explore the environment in
coarse-grained state space and larger span of time steps.
This exploration was efficient for the key-searching task.
Our algorithm could accomplish the key-searching task and
achieved a reward of 100 × γ115 ≈ 58. However, RRG-RL
had a shortcoming: it required some warming-up episodes
to start. In the beginning, RRG-AS option policies were
ineffective, leading to a difficult learning problem for the
policy over RRG-AS options. Consequently, the learning
curve stayed at low values in early episodes, as shown in
Figure 14(b). When RRG-AS options were learned relatively
well, the learning curve for RRG-RL increased rapidly.

7 CONCLUSIONS AND DISCUSSIONS

Many difficulties exist in RL algorithms, such as high sam-
ple complexity, inefficient exploration, unstable training, etc.
Compression is an efficient way to tackle these difficulties in
RL algorithms [59]. Human brains also make decisions in an
abstract way [60]. Although compression in state spaces and
times has been studied for many years [9], [10], [12], [18],
[19], it remains a persistent problem to perform practical
state-temporal compression with theoretical guarantees. In
this work, we propose a new metric RRG, which can be
learned by a neural network, to perform state-temporal
compression in RL. Furthermore, we develop a systematic
and theoretical analysis for this metric. Our theory and
algorithm make a step towards practical and optimality-
preserving state-temporal compression in RL. Although our
method addresses several open issues for compression in
RLs, the following five questions remain unanswered.

First, can compression in an SMDP approximately pre-
serve optimality for an MDP? We have proved that (ε, d)-
compression based on three metrics approximately pre-
serves optimality of an SMDP. Nevertheless, the optimal
policy for an SMDP may not equal that for an MDP because
the former relies on options. Suppose the set of policies in-
duced by subgoal options covers (or approximately covers)
the set of policies for an MDP; then, the optimal solution for
an SMDP equals (or approximately equals) that for an MDP.
Thus, one promising approach for preserving optimality of
an MDP is to parameterize and optimize a subgoal space
to enable the set of policies induced by subgoal options to
cover the whole set of policies for an MDP.

Second, can the RRG-RL algorithm be applied to any
RL tasks? The RRG-RL algorithm depends on subgoals.
Although subgoals have been widely used in RL [6], [18],
[48], [61], it remains unknown whether subgoal options are
feasible for any RL tasks. Essentially, the first and second
questions are the same. If subgoal options guarantee (or
approximately guarantee) optimality for an MDP, the RRG-
RL algorithm can be applied to any RL task. Consequently,
the theoretical relation between an SMDP and an MDP is
crucial for future studies.

Third, can state compression be applied in nonsta-
tionary environments? Existing compression approaches
including ours make an implicit assumption that the en-
vironment is stationary. When an environment is dynamic
over time, performing state compression is very challenging.
We will consider the dynamic construction of state compres-
sion in future studies.

Fourth, can the degree of state compression be auto-
matically adjusted? K represents the degree of state space
reduction and is predefined in this work. Experimental
results have shown that K is an important factor for the
performance of RRG-RL. Thus, the automatic setting of K
merits study. The reason for fixing K is that current metric
learning approach requires a fixed K. If the value of K is
variable in geodesic metric learning, K can be automatically
adjusted for the RRG metric-based compression.

Fifth, do more efficient methods exist to collect data for
metric learning? Although it is common to collect data with
a uniform random policy for learning state representations
or abstractions [40], [35], [62], [63], the uniform random pol-
icy may lead to insufficient exploration especially for realis-
tic and big environments [62], [63]. To tackle this problem,
we believe that there are two approaches worth studying
in the future. The first approach is to collect data using a
policy that can explore the entire state space efficiently. For
example, the studies [62], [63] attempt to leverage the deep
Q-network [1] to collect data such that training data can
cover all regions of the state space. Also, one can adopt
more efficient exploration policies, such as the curiosity-
based exploration policy [23]. The second approach is to
use a finite set of policies to collect data. If these policies
are diverse enough, they can sample data from all regions
of the state space. Note that the agent in an SMDP typically
has some diverse option policies. We can use these policies
to collect data for learning the geodesic-metric network. It is
desirable to incorporate the phase of agent policy learning
into the phase of metric learning.

REFERENCES
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-

ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, “Human-level control through deep re-
inforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[2] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaśkowski, “Vizdoom: A doom-based AI research plat-
form for visual reinforcement learning,” in IEEE Conference
on Computational Intelligence and Games, 2016, pp. 1–8.

[3] S. M. Kakade, “On the sample complexity of reinforcement
learning,” Ph.D. dissertation, University College London,
2003.

[4] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement
learning in finite MDPs: PAC analysis,” Journal of Machine
Learning Research, vol. 10, pp. 2413–2444, 2009.

[5] R. I. Brafman and M. Tennenholtz, “R-MAX-a general
polynomial time algorithm for near-optimal reinforcement
learning,” Journal of Machine Learning Research, vol. 3, no. 2,
pp. 213–231, 2003.

[6] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B.
Tenenbaum, “Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motiva-
tion,” in Advances in Neural Information Processing Systems,
2016, pp. 3675–3683.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

[7] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Un-
terthiner, J. Brandstetter, and S. Hochreiter, “Rudder: Re-
turn decomposition for delayed rewards,” in Advances in
Neural Information Processing Systems, 2019, pp. 13 544–
13 555.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. MIT press, 2018.

[9] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified
theory of state abstraction for MDPs,” in Proceedings of the
International Symposium on Artificial Intelligence and Mathe-
matics, 2006.

[10] D. Abel, D. Arumugam, L. Lehnert, and M. L. Littman,
“State abstractions for lifelong reinforcement learning,” in
Proceedings of the 35th International Conference on Machine
Learning, vol. 80, 2018, pp. 10–19.

[11] B. Ravindran, “An algebraic approach to abstraction in
reinforcement learning,” Ph.D. dissertation, University of
Massachusetts at Amherst, 2004.

[12] B. Ravindran and A. G. Barto, “SMDP homomorphisms:
An algebraic approach to abstraction in semi-Markov deci-
sion processes,” in Proceedings of the 12th International Joint
Conference on Artificial Intelligence, 2003, pp. 1011–1016.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning,” Artificial Intelligence, vol. 112, no.
1-2, pp. 181–211, 1999.

[14] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic
architecture,” in Proceedings of the 31st AAAI Conference on
Artificial Intelligence, 2017, pp. 1726–1734.

[15] Y. Jiang, S. Gu, K. Murphy, and C. Finn, “Language as an
abstraction for hierarchical deep reinforcement learning,”
in Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 9414–9426.

[16] B. Ravindran and A. G. Barto, “Approximate homo-
morphisms: A framework for non-exact minimization in
Markov decision processes,” in Proceedings of the 5th Inter-
national Conference on Knowledge Based Computer Systems,
2004.

[17] A. A. Taı̈ga, A. Courville, and M. G. Bellemare,
“Approximate exploration through state abstraction,”
arXiv:1808.09819, 2018.

[18] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess,
M. Jaderberg, D. Silver, and K. Kavukcuoglu, “Feudal net-
works for hierarchical reinforcement learning,” in Proceed-
ings of the 34th International Conference on Machine Learning,
vol. 70, 2017, pp. 3540–3549.

[19] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient
hierarchical reinforcement learning,” in Advances in Neural
Information Processing Systems, 2018, pp. 3303–3313.

[20] N. Ferns, P. Panangaden, and D. Precup, “Metrics for
finite Markov decision processes,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence, 2004, pp.
162–169.

[21] J. Andreas, D. Klein, and S. Levine, “Modular multitask
reinforcement learning with policy sketches,” in Proceed-
ings of the 34th International Conference on Machine Learning,
vol. 70, 2017, pp. 166–175.

[22] J. Oh, S. Singh, H. Lee, and P. Kohli, “Zero-shot task gen-
eralization with multi-task deep reinforcement learning,”
in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, 2017, pp. 2661–2670.

[23] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
“Curiosity-driven exploration by self-supervised predic-
tion,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 2778–2787.

[24] T. G. Dietterich, “Hierarchical reinforcement learning with
the MAXQ value function decomposition,” The Journal of
Artificial Intelligence Research, vol. 13, pp. 227–303, 2000.

[25] P. S. Castro, “On planning, prediction and knowledge
transfer in fully and partially observable markov decision

processes,” Ph.D. dissertation, McGill University, 2011.
[26] P. S. Castro and D. Precup, “Automatic construction of

temporally extended actions for MDPs using bisimulation
metrics,” in European Workshop on Reinforcement Learning,
2011, pp. 140–152.

[27] ——, “Using bisimulation for policy transfer in MDPs,”
in AAAI Conference on Artificial Intelligence, 2010, pp. 1065–
1070.

[28] N. Ferns, P. Panangaden, and D. Precup, “Metrics for
markov decision processes with infinite state spaces,” in
Proceedings of the 21th conference on Uncertainty in artificial
intelligence, 2005, pp. 201–208.

[29] A. L. Gibbs and F. E. Su, “On choosing and bounding
probability metrics,” International Statistical Review, vol. 70,
no. 3, pp. 419–435, 2002.

[30] P. S. Castro, “Scalable methods for computing state similar-
ity in deterministic Markov decision processes,” in AAAI
Conference on Artificial Intelligence, 2020.

[31] J. J. Taylor, D. Precup, and P. Panangaden, “Bounding
performance loss in approximate MDP homomorphisms,”
in Advances in Neural Information Processing Systems, 2008,
pp. 1649–1656.

[32] D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam,
D. Precup, and M. L. Littman, “Value preserving state-
action abstractions,” in Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, 2020.

[33] S. Mannor, I. Menache, A. Hoze, and U. Klein, “Dynamic
abstraction in reinforcement learning via clustering,” in
Proceedings of the twenty-first international conference on Ma-
chine learning, 2004, pp. 560–567.

[34] T. G. Dietterich, “State abstraction in MAXQ hierarchical
reinforcement learning,” in Advances in Neural Information
Processing Systems, 2000, pp. 994–1000.

[35] M. C. Machado, M. G. Bellemare, and M. Bowling, “A
laplacian framework for option discovery in reinforcement
learning,” in Proceedings of the 34th International Conference
on Machine Learning, 2017, pp. 2295–2304.

[36] S. Tiwari and P. S. Thomas, “Natural option critic,” in Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 5175–5182.

[37] D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near
optimal behavior via approximate state abstraction,” in
Proceedings of The 33rd International Conference on Machine
Learning, vol. 48, 2016, pp. 2915–2923.

[38] R. Ortner, “Pseudometrics for state aggregation in average
reward Markov decision processes,” in International Con-
ference on Algorithmic Learning Theory, 2007, pp. 373–387.

[39] N. Jiang, A. Kulesza, and S. Singh, “Abstraction selection
in model-based reinforcement learning,” in Proceedings of
the thirty-second International Conference on Machine Learn-
ing, 2015, pp. 179–188.

[40] S. Mahadevan and M. Maggioni, “Proto-value functions:
A laplacian framework for learning representation and
control in Markov decision processes,” Journal of Machine
Learning Research, vol. 8, pp. 2169–2231, 2007.

[41] J. Bouttier, P. Di Francesco, and E. Guitter, “Geodesic
distance in planar graphs,” Nuclear Physics B, vol. 663,
no. 3, pp. 535–567, 2003.

[42] P. Dayan, “Improving generalization for temporal differ-
ence learning: The successor representation,” Neural Com-
putation, vol. 5, no. 4, pp. 613–624, 1993.

[43] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul,
H. van Hasselt, and D. Silver, “Successor features for
transfer in reinforcement learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 4055–4065.

[44] T. Verechtchaguina, I. Sokolov, and L. Schimansky-Geier,
“First passage time densities in resonate-and-fire models,”
Physical Review E Statal Nonlinear and Soft Matter Physics,
vol. 73, no. 3, p. 031108, 2006.

[45] T. G. Mattos, C. Meja-Monasterio, R. Metzler, and G. Os-

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3069005, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

hanin, “First passages in bounded domains: When is the
mean first passage time meaningful?” Physical Review E
Statal Nonlinear and Soft Matter Physics, vol. 86, no. 3-1, p.
031143, 2012.

[46] L. Yang and R. Jin, “Distance metric learning: A compre-
hensive survey,” Michigan State Universiy, vol. 2, 2006.

[47] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality
reduction by learning an invariant mapping,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, 2006, pp. 1735–1742.

[48] O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-
optimal representation learning for hierarchical reinforce-
ment learning,” in International Conference on Learning Rep-
resentations, 2019.

[49] M. E. Taylor and P. Stone, “Transfer learning for rein-
forcement learning domains: A survey,” Journal of Machine
Learning Research, vol. 10, no. 10, pp. 1633–1685, 2009.

[50] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-
parametric topological memory for navigation,” in Inter-
national Conference on Learning Representations, 2018.

[51] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Polle-
feys, T. Lillicrap, and S. Gelly, “Episodic curiosity through
reachability,” in International Conference on Learning Repre-
sentations, 2019.

[52] S. K. Bhatia, “Adaptive k-means clustering,” in Interna-
tional Florida Artificial Intelligence Research Society Confer-
ence, 2004, pp. 695–699.

[53] G. D. Konidaris, L. P. Kaelbling, and T. Lozano-Perez,
“Symbol acquisition for probabilistic high-level planning,”
in Proceedings of the Twenty Fourth International Joint Confer-
ence on Artificial Intelligence, 2015, pp. 3619–3627.

[54] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From
skills to symbols: Learning symbolic representations for
abstract high-level planning,” Journal of Artificial Intelli-
gence Research, vol. 61, no. January, 2018.

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” arXiv:1412.6980, 2014.

[56] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu,
G. Tesauro, and M. Campbell, “Eigenoption discovery
through the deep successor representation,” 2018.

[57] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”
arXiv:1606.01540, 2016.

[58] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal dif-
ference models: Model-free deep RL for model-based con-
trol,” in International Conference on Learning Representations,
2018.

[59] G. Konidaris, “On the necessity of abstraction,” Current
opinion in behavioral sciences, vol. 29, pp. 1–7, 2019.

[60] M. M. Botvinick, “Hierarchical reinforcement learning and
decision making,” Current Opinion in Neurobiology, vol. 22,
no. 6, pp. 956–962, 2012.

[61] J. Rafati and D. Noelle, “Unsupervised subgoal discovery
method for learning hierarchical representations,” in 7th
International Conference on Learning Representations, ICLR
2019 Workshop on Structure and Priors in Reinforcement
Learning, 2019.

[62] J. Mugan and B. Kuipers, “Autonomous learning of high-
level states and actions in continuous environments,” IEEE
Transactions on Autonomous Mental Development, vol. 4,
no. 1, pp. 70–86, 2012.

[63] A. Srinivas, R. Krishnamurthy, P. Kumar, and
B. Ravindran, “Option discovery in hierarchical
reinforcement learning using spatio-temporal clustering,”
arXiv:1605.05359, 2020.

Shangqi Guo received a B.S. degree in mathe-
matics and physics basic science from the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 2015. He is currently
pursuing a Ph.D. degree at the Department of
Automation, Tsinghua University, Beijing, China.
His current research interests include inference
in artificial intelligence, brain-inspired comput-
ing, computational neuroscience, and reinforce-
ment learning.

Qi Yan received a B.S. degree from the Depart-
ment of Automation, Tsinghua University, Bei-
jing, China, in 2015, where he is currently pur-
suing a Ph.D. degree. His current research in-
terests include computer vision, artificial intelli-
gence, and reinforcement learning.

Xin Su received a B.S. degree in mathematics
and physics basic science from the Department
of Physics, Tsinghua University, Beijing, China,
in 2016. He is currently pursuing a Ph.D. de-
gree at the Department of Automation, Tsinghua
University, Beijing. His current research interests
include lifelong learning, reinforcement learning,
and general machine learning techniques.

Xiaolin Hu (S’01-M’08-SM’13) received B.E.
and M.E. degrees in automotive engineer-
ing from the Wuhan University of Technology,
Wuhan, China, in 2001 and 2004, respectively,
and a Ph.D. degree in automation and computer-
aided engineering from the Chinese University
of Hong Kong, Hong Kong, in 2007. He is cur-
rently an Associate Professor at the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China. His current research
interests include deep learning and computa-

tional neuroscience. At present, he is an Associate Editor of the IEEE
Transactions on Image Processing. Previously he was an Associate Edi-
tor of the IEEE Transactions on Neural Networks and Learning Systems.

Feng Chen (M’06) received B.S. and M.S. de-
grees in automation from Saint-Petersburg Poly-
technic University, Saint Petersburg, Russia, in
1994 and 1996, respectively, and a Ph.D. degree
from the Automation Department, Tsinghua Uni-
versity, Beijing, China, in 2000. He is currently a
Professor at Tsinghua University. His current re-
search interests include computer vision, brain-
inspired computing, and inference in graphical
models.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2022 at 05:59:09 UTC from IEEE Xplore.  Restrictions apply. 


